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-Abstract—Because taxi fares usually increase with the length of the ridz and because many passengers are ignorant
of which is the most direct route to their destinations, taxicab operators have an incentive to cheat their customers
by taking circuitous routes. In this paper we provide a theoretical analysis of such cheating. We find that a
moropolist will cheat its customers more than would a competitive firm: that an increase in the ntumber of
‘taxicabs will increase the extent of cheating: and that in the absence of a certain form of nonlinear pricing,
operators will either cheat some customers or refuse to serve others. .

1. INTRODUCTION

In most cities the fare for a taxicab ride is an increasing
function of the length of the trip, so that a taxicab
operator can increase his profits by taking a circuitous
route to the passenger's destination, instead of taking
the most direct one. Although no reliable data exist
‘concerning the extent of such cheating, this phenomenon
is not only a theoretical possibility: in twelve trips be-
tween the Los Angeles airport and downtown Los
Angeles, an investigating reporter for the Los Angeles
Times was cheated seven times. Drivers taking indirect
-routes added as much as $5.60 (that is, 43%) to the cost
of a ride (see Los Angeles Times 1979).

This type of overcharging is, of course, present in
‘'other markets as well (such as those for the services of

-physicians, lawyers, plumbers, or automobile repairmen)--

But the taxicab market possesses severa) distinguishing
features which make it particularly appropriate for study.
‘First, because few passengers are likely to encounter the
same driver more than once and because many pas-
.sengers are visitors who will leave the city soon after
.obtaining service, the prospect of repeat patronage is
remote; a taxicab operator who cheats his customers
loses little future business by doing so. This feature
distinguishes the present analysis from that given by
~ Darby and Karni (1975) in their seminal paper. The latter
authors see each firm as choosing a price that will maxi-
mize the value of current profits plus the anticipated
present value of future profits obtained from services to
a given customer. In contrast, our analysis focuses on
the relationship between different price structures and a
firm's incentive to serve many customers quickly and
honestly, instead of spending that same time defrauding
a few unfortunate consumers.

Second, cheating in the taxicab market wsuaily takes

tThe research reported in this work was supported bv the
Instilute of Transportation Studies at the University of Caitfor-
nia, Irvine. Helpful suggestions were provided by Charles Lave,
Pete Ficlding, and an anonymous referce.
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the form of providing overly long rides; it 1s a rare
passenger who is delivered short of his destination.
(Nevertheless. taxicab operators may simply refuse to
serve some passengers, an issue we deal with below.)
‘Finally, a passenger obtains no benefit whatsoever from
a ride which is longer than necessary. Ail this stands in
marked contrast to the medical market, for example, ia
which the client relationship plays an important rofe. and
where the penefit obtained by the customer is usually an
increasing function of the amount of service provided.

By considering these special features of the taxicab
market, we are able to offer a reasonably simple mode!
of a market in which cheating oncurs. Our assumptions
are set forth m Section 2. In Section 3 we consider the
case in which all consumers are identical; this model is
generzlized in Section 4. In section 5 we determine the
characteristics of a fare structure that makes cheating
unprofitable. Concluding comments are offered in the
final Section.

-2 FRAMEWORK

As mentioned above, this paper determines the rela-
tion between the fare structure (which is taken to be
exogenously set), and the degree of cheating "in the
taxicab market. In providing a ride of duration ¢, the
operator earns a revenue of h({) dollars. We treat h(t} as
being given exogenously, but it is useful to discuss the
forms it may take. Fares in the taxicab industy are
usually set by a governmnental agency. Most of the fares
consist of a fixed charge, F, plus a variable charge (of
say, p) for each minute or mile the passenger is served.
Thus, the regulated fare is roughly F + pt. But the driver
also faces the risk tha: a passenger refuses to pay the
fare, or thal, believing he has beea cheated, the pas-
senger imposes monetary and non-monetary costs on the
driver. Thus, h{t)= F + pt, plus some other, generally
nonlinear, term. . :

Let ¢{t) be the variable cost of providing service, so
that the driver's nzt revenue in serving a passenyer for f
minutes is g(f) = Alf)-c(). Such a function is shown as
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curve GG in quadrant I of Figure 1. The only assumption
made about g(t) is that it be an increasing function of ¢
for at least some values of 2. If g{t) is not everywhere
concave, we need consider only its convex hull. Thus, in

-Fig. 2, if g(t) is given by the solid curve, the curve
televant for our purposes is the one depicted with broken
segments. For convenience, this latter curve is referred to
as g(1).

Taxicabs operate in the following manner. A driver
picks up a passenger and serves him for, say, t minutes,
thereby earning a net revenue of g(t) dollars from that
customer. The driver must search for a new passenger
upon the completion of each ride. The driver does not
know precisely how long he will have to wait until he
finds a new customer; but he does know that the expec-
ted length of time spent searching for a new customer is
-w minutes. The operator earns no revenue and incurs no
expenses during a period in which the taxi is unoccupied.

The taxicab operator’s objective is to maximize profits,

tAnalytically, a driver’s problem is to maximize g(t)/(w + 1)
where w is treated as a parameter by any oue driver. A necessary
condition for an optimum is that g'(¢) = g(e)f(e 1)

g(t)
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that is, to maximize his total net revenue for the period
under consideration, or, equivalently, to maximize
average net revenue. In serving any N passengers the
driver earns a profit of Ng(t) dollars, and spends an
average of N(w +t) minutes waiting and driving. Thus,
the driver's average net revenue is g(t)/(w+t), and he
wishes to maximize this function given his control over .
Maximization requires that marginal net revenue equal
average net revenue.t Thus, in Fig. 1, if w=w,, the
optimal value of ¢ is 1,. Average net revenue is given by
the slope of line w,w,, which equals marginal net rev-
enue as given by the slope of curve GG at point C.

There is no reason to suppose that this value, #,,
represents the minimum time required to serve a pas-
senger. It may well be that the same distance could be
covered in only t* minutes (where t* <1,). The value of
t; — t* represents the extent of cheating practiced in the
market.

The equilibrium duration of a ride depends on w, a
driver's expected waiting time for a passenger. In a
market in which there are many taxis, no one driver can
affect the value of w observed in that market. Yet w
itself is a.function of the lengths of rides offered. Recall
that to each value of ¢ there corresponds a price for the
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ride, h(f). Consumers’ demand for taxi rides is, of
course, a function of this price, of the expected duration
of a ride {ceteris paribus, consumers’ demard for taxicab
service is greater the more quickly a passenger is de-
livered to his destination), and of the expected length of
time a consumer must wait until he is served. But a
consumer’s expected waiting time is, in turn, a func-
tion of the total number of consumers who desire service;
the greater the number of passengers served, the longer
each consumer must wait for service. Thus, consumer
demand, which we denote by D, can be given by the
function D= fID, h(1), t}. But this means that holding
constant consumer income and. the prices of all other
good§, D is a function of ¢ alone, say D = D(1).

We can now turn to a discussion of drivers™ waiting

times. For any fixed number of taxis, each driver’s

waiting time is a function of the number of passengers
who wish to be served and of the average length of a
ride; the greater the demand for rides, or the longer the
duration of a typical ride, the shorter the expected length
of time each driver must wait to find a-new-passenger.
We can therefore write w = w{D(1), t} = w(t).

Thus, it is evident that a driver’s expected waiting time
is a function of the tength of rides. Note that the form of
the function w(t) reflects the effects of two important
features of the market: that the demand for rides is a
function of a passenger's expected waiting time and of
the amount of cheating practiced in the market.

It is impossible to determine on a priori grounds
whether w(t) is an increasing or a decreasing function of
t. An increase in ¢ has two opposing effects. On the one
hand, it should decrease the number of consumers who
demand service, and thercby increase w. On the other
hand, the longer each passenger is served, the fewer the
number of taxicabs that are unoccupied, and therefore
the lower the value of ». Because the analysis is very
similar for the cases in which w is a decreasing and
an increasing function of 1, in the interests of brevity we
consider only the former case. Two such functions are
shown as curves AA and BB in the fourth quadrant of
Fig. 1.

With. the- aid of the 45° line shown:in quadrant HI of

“Fig. 1, we can put the apparatus to work, and determine

the equilibrium levels of the duration of a ride, the price
of a ride, and a taxicab’s waiting time.

3. EQUILIBRIUM IN A SIMPLE MODEL
Two cquilibria are depicted in Fig. 1, at points C and
D: We examine first the former one (and ignore for the
moment curve BB). When ¢ = ¢, we read: from curve AA

that w(t,) = w,. Given that w= wy, cach driver maxi-

mizes average nhet revemue by setting r={,. At this
equilibrium, the net revenue obtained from each cus-
tomer is g, = g{t,), average net revenue equals g,/{t, +
wi), and line wyw, is tangent to curve GG at point C.
Suppose next that the function w(¢) changes in'any
manner . whatsoever with- the effect of increasing a
driver’s. expected waiting time for any given value of 1.
In quadrant IV of Fig. 1 this is depicted by a shift in the
function w(¢) from crrve AA to curve BB. H curve GG
is concave, then such a shift necessarily leads to an
increase in the equilibrium value of ¢. In our case, given
curve BB rather than AA, the new equilibrium value of ¢
is ., w equals w., the net revenue obtained from each
customer has increased from g, to g., and a drver's
average revenue has decreased from that given by the

-slope of line w,w, to that given by the slope of line wyw-.

Two applications of this result may prove useful.
Suppose that in the initial equilibrium ¢ = ¢,. If the num-
ber of taxicabs is increased, then we would expect that
for any given value of t each driver’s waiting time
increases; that is curve AA shifts down to curve BB. In
this new equilibrium the value of  has increased from ¢,
1o f.. An increase in the supply of taxicabs has resulted in
an increase in cheating.

As another application, suppose there is an exogenous
increase in the demand for rides (which may be caused,
for example, by a bus strike). This has the effect of
shifting 4 curve such as BB upwurds and.to the left. In
the new equilibrium, the value of 1 will huve decreased
and the extent of cheating will have diminished.

These eflects have been ignored in the literature (see,
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for example, Abe and Brush (1976), Coffman (1977), De
Vany (1975), Douglas (1972), Manski and Wright (1976).

Orr (1969) and Schreiber (1977)). Virtually all of this .

literature on the taxicab industry focuses on one aspect
of the market: consumers’ demand for service, and the
utility they derive therefrom, is a function not only of the
price of a tide, buf also of the length of time a consumer
must wait for service.

The authors of these articles therefore agree that
excess ¢capacity does not necessarily reduce the level of
social welfare; for the lower the utilization rate of taxis,
the less time consumers have to spend waiting for ser-
vice. But this view is misleading: it ignores the possibility
that drivers cheat their passengers. Because a driver can
serve each passenger for an unduly long time, and will
wish to do so when passengers are hard to find, an
increase in the number of taxis has the effect of increas-
ing both the average length of a ride and the fare that
passengers pay; the increase in capacity may have little
tffect on the availability of taxis.

TAnalytically, the monopolist’s objective is to maximize
g(D/(w()+1). A necessary condition for a maximum is that
g(DI(w(n+ 1) =g (N(w' () +1). ‘
© $Proof: Let S=[g(O}[w(t)+¢]. We wish to evaluate
(ds)/(dt) at point f; of Fig. 1. (ds)i(de)={{w(t)+1)g'(t)—
g(O[wW (O + 1Y{{w(t) + 1T°], and therefore (ds)/(dt)> 0 if [w(e) +
tig'(t) > g(Iw'Ct) + 1]. But at point ty. (g(O)(w(t)+ 1) =g'(¢), so
that at point, 1, (ds)/(dt) > 0if w'(1;) <0. That s, the monopolist can
increase his profits by choosing a value of 1 whichis.greater than the
equilibrium value of t, 1), in a competitive market. QED.

glt)

So far we have analyzed the equilibrium solution in
an atomistic market in which the behavior of any one driver
does not affect the behavior of other drivers or con-
sumers. We can, however, also determine the profit
maximizing level of ¢ that would be chosen by a mono-
polist.

Suppose that a fixed number of taxis are operated by
one firm; that is, management can instruct each driver on
the length of time, f; he should serve each passenger. As .
before, assume that the net revenue function, g(1), is
exogenously fixed, and that the firm's objective is to
maximize total revenue; but once again this objective is
identical to the maximization of the revenue earned each
minute a taxi is in operation. The monopolist will choose
that value of ¢ that maximizes g(t)/(w(r)+1¢); but
whereas an operator in a competitive market views w as
fixed, the monopolist recognizes that w is a function of ¢

A monopolist’s optimal solution is shown by point M
in Fig. 1.7 Each passenger is served for f,, minutes, each
driver waits an average of w,, minutes until he finds a
new passenger; the average revenue earned per minute is
given by the slope of line w,M, which we note, is
steeper than the slope of line w, w, representing average
net revenue in a competitive market.

In this example, the monopolist serves each passenger
for a longer period than would a driver who individually
maximizes revenue. This result is generally true if the
curves depicting g(t) and w(t) are upward sloping.t
Cheating may be a more serious problem in a monopolistic
than in a competitive market.

w(t)

G - ———

Fig. 3.
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4 TWO CLASSES OF CONSUMERS

The previous section examined the equilibrium amount
of cheating for the case in which all consumers are
identical. More generally, however, different consumers
wish to be transported to different locations. One pas-
senger’s destination may be a slum a mile away, where
the driver may be mugged, while another passenger
wishes to be driven to a suburb at a distance of twenty
miles.

The pet revenue, g(t), obtainable from these two pas- -

sengers may then well differ, in which case several
interesting questions arise. How long is each customer
served? Are all passengers served or does a driver find it
profitable to refuse service to somie customers and in-
stead to wait for some other passengers? What is the
effect of an increase in the fare for one class of cus-
tomers on the quantity of service provnded other cus-
tomers?

We suppose that the population. of potcntml pas-
sengers is equally divided between the two classes. The
net revenue obtainable from each type-H consumer is
shown by curve HH in Fig. 3, and the net revenue
obtainable from type-J consumers is shown by curve JJ.
A driver need not, of course, treat these two types of
consumers identically; let ¢4 be the length of rides pro-
vided type-H consumers, and let £, bé the correspondmg
value for type-J consumers.

The first topic we address are the values of ty and t
chosen by a driver when both classes of consumers must
be served. The problem is easily solved by considering it
in two stages: first the optimal choice of T =
it +3t; (ie. the average time a passenger is served),
and second, the optimal choices of t and f; subject to
the constraint that Wu+t)=T

Consider first the latter problem. It is clear that for
.any value of T, the values of t; and & must satisfy the

condition that the added revenue obtainable from serving

a customer for an additional unit of time be equal for all
customers, or that g/{ty) = g,(t,) t Given this condition,
and the identity that T = {tuw + ), we can find the
-Optimal values of t and t, for any given value of T. We

tLet gy (ty) be the revenue earned from a type-H consumer
who is served fy; minutes. and Jet g,(1;) be the corresponding
function for a type-J consumer. The driver's objective is to
maximize average revenue,

u(te) + 8,(1))
Wity +ily

where the choice variables are f; and ty. The first order con-
ditions for a maximum are:

(w +% ty +% 'J)s;Kru) = [sn(m)”""”(%)'
and

UYL 1
(“' "’% ty + 3 fl)R)“l) = [gu{tu) + 81 (5)-
from which it follows that at the op(imulﬁ gLt = gihty).
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can therefore also determine the value of g(T)=
112[gx(€u) + g:(;)). This function g(T), representing the
taxicab operator’s net revenue from providing rides
whose average length is T minutes. is shown as Curve
SS in Fig. 3. For example, when T equals T%, the
optimal value of ty is t3}, and the optimal value of ¢, is
ty; gu(th) is given by the length of segment tfH*,
&(1) is given by the length of segment t7J*, the slopes
of curves HH at point H*, JJ at point J*, and SS at
point $* are all equal, and llZ(g,,(t,,)ﬂ-g,(r,)) equals the
length of segment T55°.

Once curve SS has been dcnvcd it can be used in the
same manner that curve GG was used in Fig. 1. If the
average duration of a ride is 7 minutes, then the average
revenue that can be obtained from a passenger is g(7),
which can be read off from curve SS.

In -addition to the time spent serving passengers,

. each driver also spends some time searching for .

passengers. A driver's average waiting time per cps-
tomer, w, is a function of the average values of ¢ty and £,
.observed in the marketplace. But since we know the values
of t; and t, for any value of T, we can determine the
function w(T), which is shown by curve AA in quadrant
IV of Fig. 3. Finally, as in the discussion of the simpler
case, once the value of w is known. the driver’s optimal
sfrategy can be found from the point of tangency be-
tween the curve SS and a line originating at point (~w
0).

Under the assumption that both classes of consumers
are served, an equilibrium is depicted in Fig. 3 by those
points with superscripts A. The equilibrium value of w-is
w*. The optimal value of ¢ given this value of w is T3,
and at point' S* line w”*w* is tangent to curve SS. Each
type-H passenger is served for ¢7; -minutes, and each
‘type-J passenger is served for t7 minutes. The driver’s
average net revenue is given by the slope of line W*w*,

There is no reason to suppose, however, that a driver
will wish to carry all passengers he may firid. It may be
worthwhile -for any one driver to serve only type-H
passengers.” Suppose that initially all but one of the
drivers serve both types of passengers, and that one
driver serves only type-H passengers. As these type-H
consumers constitute only half of the total number of :
consumers, the driver’s average waiting time for a typc-H
consumer is w* =2w*, Given this value of w, the driver
maximizes net revenue by serving each type-H customer
he finds for ¢f minutes; for at this value of ¢ the line

w® is tangent to curve HH. Observe that the slope
of line wPw? is greater than the slope of line w*w?,
which means that this driver earns a larger average
revenue than do drivers who serve all passengers. .

Moreover, passengers may prefer to be served by a
driver who serves only type-H consumers. Recall that
the slope of curve HH at point H* is equal to the slope
of curve SS at point $*. But if line w¥w” is steeper
than line w*w™, and curve HH is concave, then ¢t must
be tess than ¢ In markets in which cheating (that is
the provision of unnecessarily long rides) is a problem,
consumers served by a driver who transports only type-
H consumers will be cheated less than are other con-
sumers. To summarize, a driver who does not serve all
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classes of customers will earn greater profits and will
charge a lower fare than wilf drivers who serve all con-
sumers.t In equilibrium, it may well be that operators
refuse to serve some classes of customers.

Finally, given the resemblance between curve SS of
Fig. 3 and curve GG of Fig. 1, it is easy to see that all of
the results obtained in Section 3 also apply to the case
in which there exists more than one class of consumers:
" in general drivers will find it profitable to cheat their
customers; an increase in the number of taxicabs in
service will lead to more cheating, and may therefore
have little effect on decreasing consumers' waiting time;
cheating is likely to be a more serious problem in a
monopolistic than in a competitive market.

8. CHEAT PROOF PRICES
The previous sections showed that
of ¢ chosen by the seller is determined by the fare
structure, ie, by the form of g(f). In this section we
determine the nature of a price structure that induces
drivers to serve all customers without cheating any one
of them.

The nature of the problem is best illustrated by a

simple example, although the results can be applied more
generally. Let the population be equally divided between
‘two types of consumers. Let the minimum amount of
time required to transport each type-H and type-J cus-
tomer be fy minutes and £, minutes respectively; we
define cheating 1o occur whenever a passenger is served
for a longer period than this required minimum. Let the
taxicab operator receive p, dollars for serving a cus-
tomer for ¢, minutes, and let him receive py dollars for
serving a customer for #,; minutes. Although these fares
are fixed, the operator determines the length of service
he provides each customer; he may, for example, serve
type-H customers for t, minutes, where t, > ty.

Our first goal is to determine prices such that the
driver will not find it profitable to cheat in such a
manper. If the driver does not cheat, his average revenue
is

Putpr . '
2‘0.'+IH+IJ (1)

If he does cheat, he serves each passenger for ¢, minutes
at a charge of p;; the driver's average revenue would be

2P
2W+2f1 (2)

The driver will not cheat type-H customers if

prtps 2p;
2w+t,4+t,22w+2t, (3)

tIn Fig. 3 we have a situation in which, in equilibrium, drivers
will not wish to serve type-J consumers. Obviously, if curve 3}
were shifted sufficiently upwards and to the left, we would find
an equilibrium in which drivers would wish to serve afl con-
sumers.

the value

or

Pu Wtin

Dy T owe t (4)

As all that matters is relative prices, we gan assume

that p; is fixed; it follows that the lo:vest value of py, for

which the driver will find no gain in cheating a type-H
passenger is that for which

Bu Wiy
Pr W+l ©)

But eqn (5) implies that, in general, the price structure
must have the form g(t)—pw+pl- F +pt, where t is

‘the length of a ride, p is the charge per minute of service,
‘and F is a fixed charge. ~

This pricing structure has an additional attractive fea-

ture: it provides the driver with an incentive to serve a

passenger regardless of the length of ride the passenger -
desires. To see this, recall that the average revenue
earned by a driver who serves all customers (with no
cheating) is given by eqn (1). If the driver serves only
type-H customers his expected waiting time for a cus-
tomer is 2w, so that his average net revenue is

_PH__
2W+tH (6)

The driver will find it unproﬁtable to serve onIy type-H
passengers if and only if

Pu__ __Putps M
2wty " 2wty +t-

Substituting py =pw+pty, and p,=pw+pt; in
expression (7), we obtain . '

plw+ ) _pRwHtn+1t;) _ ®)
2W+1" - 2w+tH+t]

But inequality (8) is always satisfied; given the prices
specified drivers will not find it profitable to refuse
service to some customers.

Notice that these prices, F + pt, are non-linear in the
sense that

P b
Pu ly

We conclude that, apart from any considerations of price

discrimination, the average price per mile of a long

taxicab ride should be less than that of a short ride. The
price of a ride should be proportional to the total time
necessary to provide service, including the expected time
a driver spends to find a passenger. In other words, cheat
proof prices should consist of both a fixed charge and of
a variable charge that is a function of the length of
service provided.

The fixed charge, F should be proportional to w. i
F < pw then, in general, a driver would find it profitable to
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serve few customers and to cheat those customers he
does serve. If F> pw the driver would find it profitable
to refuse service to some passengers who require long
rides, and would instead serve many customers each of
whom he can transport in a short period. That is, any set
of prices that differ from the ones specified above may
cause drivers to cheat or else to refuse service to some
groups of customers.

6 CONCLUSION

Regulation of the taxicab industry has traditionally
consisted of two uncoordinated parts: the setting of
fares at some remunerative level, and the use of ad-
ministrative procedures to deal with problems of service
quality. The usual response, for example, to complaints
of madequate service in some areas of the city is the
institution of ineffective rules requiring taxicab operators
to serve all customers; complaints of cheating by drivers
may lead to the occasmnal levying oi fines against the
culprits.

We have argued, however, that these problems may
arise simply because of the adoption of an improper fare
structure. The use of a two-part tariff which refiects both
the cost of transporting a passenger and the cost of
finding him may prove effective in solving problems of
the quality of service. ‘
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