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Abstract

We study dynamics in frictional markets with inventories, focusing on mod-

els with intermediated trade, where middlemen buy assets or goods from

sellers and sell them to buyers. Extending previous work, we include hetero-

geneous buyer valuations, and develop a characterization of equilibrium in

terms of reservation trading strategies (homogeneous valuations imply bang-

bang solutions with discontinuities that are awkward for the economics and

mathematics). In continuous or discrete time, equilibria exist where mar-

ket participation, trading strategies, liquidity, and other variables fluctuate

as self-fulfilling prophecies. This is driven by strategic considerations, not

increasing returns or related assumptions made in other models.
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Your inventory cycle is basically a three-step relationship between the

supplier who provides the product, the retailer that sells the product,

and the consumer who buys the product. Pierre (2019).

1 Introduction

This paper is a study in economic theory, but we think it is has substantial relevance

for the way one thinks about markets in the real world. The goal is to understand

dynamic equilibria in search-based models of inventories, with a focus on interme-

diated trade: middlemen buy assets or goods from sellers, then sell them to buyers.

A key extension over related work is to incorporate heterogeneous valuations and

develop a characterization of outcomes in terms of reservation trading strategies,

since homogeneous valuations imply bang-bang (corner) solutions that create dif-

ficulties for the economics and the mathematics. A main result is the existence

of multiple equilibria, including continuous- or discrete-time cycles, where invento-

ries, market participation, liquidity, prices, markups and other variables fluctuate

as self-fulfilling prophecies.

Our approach to middlemen and inventories builds on a literature going back

to Rubinstein and Wolinsky (1987). This research studies markets with frictions,

using search theory, and roles for middlemen arise from their comparative advan-

tage in certain attributes, including matching efficiency, information, bargaining

power, and storage cost or capacity.1 While following in this tradition, past papers

mainly concentrate on steady states, or sometimes transitions to steady state. We

emphasize the possibility of endogenous fluctuations.

The objects being traded can be either assets or goods, the difference being that

inventories of assets yield positive returns, while inventories of goods yield negative

returns, i.e., storage costs. That distinction, which is convenient for keeping track

of different cases, is borrowed from Nosal et al. (2019), and in that model it makes a

big difference, while here it turns out to be less important. Still, interpreting agents

1Rather than review the literature, we refer to Wright and Wong (2015), which lists papers

where middlemen have advantages in search, information etc. Work since then includes Nosal et

al. (2019), Farboodi et al. (2018), Farboodi et al. (2023), Hugonnier et al. (2020) and Gong (2023).
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as trading assets is interesting because it connects to the literature on search-based

models of OTC (over the counter) financial markets following Duffie et al. (2005).

However, although that framework typically has dealers intermediating between

asset sellers and buyers, they hold no inventories, and instead simply transfer assets

between agents using a frictionless interdealer market (with exceptions, like Weill

2007, but he does not address the issues studied here).

Multiplicity emerges from heterogenous valuations by buyers combined with

entry by sellers. When a middleman contacts a buyer, even if there are myopic gains

from trade, there is an option to hold out for a future buyer with higher valuation.

Agents use reservation strategies, but compared to standard formulations a new

strategic effect arises: If middlemen are more inclined to sell to buyers — i.e., have

a low reservation value — they more often need to replenish inventories. That

makes it easier for sellers to trade, increasing seller entry and making it easier

for middlemen to replenish inventories, which rationalizes a low reservation value.

However, if reservation values are high, there are few sales to buyers and less need

for middlemen to replenish inventories. That reduces seller entry, making it hard

to replenish inventories, which rationalizes a high reservation value.

The complementarity between reservation strategies and market participation

is novel and is a good reason to have heterogeneous valuations. In a similar model

with homogeneous valuations, Nosal et al. (2019) can get multiplicity only in mar-

kets for assets, i.e., only if inventories have positive returns. The reason is simple:

with homogeneity middlemen never decline trade with a buyer to hold out for one

with higher valuation, but might keep rather than sell inventory for its return if

that is positive. With heterogeneous valuations, we get multiplicity and interesting

dynamics for goods or assets, although it is easier with assets, as discussed below,

consistent with a long tradition of arguing that financial intermediaries are par-

ticularly prone to instability or volatility (see Gu et al. 2023 for a discussion and

references to those making that claim).

Having said that, we like that the model can generate interesting results in

markets for goods, not just assets. One interpretation is that ours is a model of
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retail trade, and a stylized fact is that the efficiency/productivity of these markets

differs dramatically across economies, as discussed by Lagakos (2016). Multiplicity

is consistent with the idea that retail markets in some economies may be stuck in

a bad equilibrium, where low efficiency/productivity is a self-fulfilling prophecy.2

Going beyond steady states, we are interested in the possibility of endogenous

fluctuations. To this end bifurcation theory is used to show there are limit cycles.

The use of these methods goes back to Benhabib and Nishimura (1979) in growth

theory. Applications in search include Diamond and Fudenberg (1989), who get

cycles in Diamond (1982a) if the matching technology displays increasing returns,

and Mortensen (1999), who gets cycles in a version of Pissarides (2000) if the pro-

duction technology displays increasing returns. One might question the empirical

relevance of increasing returns, but that aside, it seems fair to say that these results

are driven by mechanical technology specifications that play no role here.3

There are many papers with multiplicity and endogenous dynamics in mone-

tary economics (see the surveys by Lagos et al. 2017 and Rocheteau and Nosal 2017

for search-based models, and Azariadis 1993 for other approaches). The economic

forces behind those results are different, relying on the notion that what you accept

in exchange depends on what others accept. One manifestation of the difference is

that our results work through heterogenous valuations and endogenous participa-

tion, factors that are not needed for the results in monetary theory.4 A feature of

monetary models is that utility is not (perfectly) transferable. Burdett and Wright

(1998) show nonmonetary search models with nontransferable utility can also have

multiplicity and dynamics while the same environment with transferable utility

2Given his expertise, we quote Lagakos, with permission, from correspondence: “That does

sound intriguing — I don’t remember seeing a paper that says something like that. I have the

impression that even countries of similar income levels often have pretty different retail structure

and efficiency. That smells like it could be multiple equilibria.”
3Other search models with dynamics based on increasing returns or related devices include

Howitt and McAfee (1988,1992), Boldrin et al. (1993), Kaplan and Menzio (2016) and Sniekers

(2018). Fershtman and Fishman (1992), Burdett and Coles (1998) and Albrecht et al. (2013) are

examples of search models with somewhat different dynamics.
4Kehoe et al. (1993) and Renero (1988) study cycles in the discrete-time model of Kiyotaki

and Wright (1989), although Oberfield and Trachter (2012) show the cycles vanish as period

length shrinks, as discussed in Section 4.3; this is one reason we use continuous time in much of

this paper. See, e.g., Rocheteau and Wright (2013) and references therein for related work.
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cannot, and a nice recent application of this to OTC markets is Martel (2023).

This is not relevant in our setup, where utility is transferable.5

Motivating general interest in inventories, many people think that they are an

important component of business cycles, in part because they are volatile and pro-

cyclical. This can be understood with a supply-side story: when productivity is

high, it is efficient to produce a lot and keep some as inventory to spread good times

into the future. This paper instead concerns a demand-side story: holding produc-

tivity constant, when inventories are high production slows because middlemen are

not buying. This could make inventories countercyclical if there were no shocks,

but of course there can be many shocks driving cycles. Hence, countercyclicality

here describes not the macro data, but what can happen as a self-fulfilling prophecy

about inventories, trading strategies and entry decisions.6

Section 2 presents a relatively simple specification, without entry, and shows

equilibrium is unique. Section 3 adds seller entry and shows how multiplicity and

cycles can emerge. Section 4 explores other topics: welfare; entry by middlemen

instead of sellers; discrete-time models; and a version where consumers instead of

middlemen hold inventories. Section 5 concludes. Proofs are in the Appendix.

2 The Basic Framework

A continuum of infinitely-lived, risk-neutral agents come in three types, labeled ,

 and , for buyers, sellers and middlemen, with differences detailed below. Type

 can participate in a continuous-time, bilateral matching market if they pay entry

5Transferable utility means there are no payment frictions. One imlication is that, while in

what follows we often describe trade between middlemen and others as being decided by the

former, in fact the decision is joint: they trade as long as the total surplus is positive.
6See Blinder (1990) and references therein for early work advocating the importance of inven-

tories in macro; there is too much later work to review here, but see Khan and Thomas (2007) for

an example. To give some idea of what macroeconomists find interesting, consider quarterly U.S.

data, 1974-2007 (it is common to stop in 2007 to avoid the financial crisis, but the patterns are

similar in a longer sample, even if the magnitudes are somewhat different). Inventories over GDP

average 0.56. After taking logs and HP filtering, the sd (standard deviation) of inventories over

the sd of GDP is 0.86 and their correlation is 0.73, while the sd of sales over the sd of GDP is 0.19

and their correlation is 0.95. This seems consistent with a supply story — when productivity and

output are high, it is efficient to consume some and inventory the rest. While that is interesting,

ours is a micro model of a market, not designed to capture macro facts.
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cost , but for now  = 0 ∀ so everyone participates. Indeed, they participate
forever, which is not crucial but simplifies some calculations compared to, e.g.,

Rubinstein and Wolinsky (1987) where  stays forever while  and  exit after

one trade, or Nosal et al. (2017) where everyone exits probabilistically after each

trade (see also Vanyos and Wang 2007 or Farboodi et al. 2023). When  and 

meet,  can produce an indivisible object , at 0 cost, that gives  match-specific

payoff , with CDF  () on [ ]. Note that  can be utility if  consumes , or

profit if  uses it as an asset for investment or input for production.

In spirit if not detail this is similar to much work following Duffie et al. (2005).

There all agents can store  and individual valuations change over time, determining

who wants to buy and sell. We are pursuing versions like that in a companion paper,

but here, for tractability, it is better to have dedicated sellers , who are always

the originators of , and dedicated buyers , who are always the end users.

In any case,  can produce for  , who can store  in inventory, and may or

may not sell it to  when they meet. Hence,  can be interpreted as agents with

a storage technology — others cannot store , for now, but see Section 4.4. There is

a flow payoff  for with  in inventory, and we say that  is an asset when   0

(it has a return), while  is a good if   0 (it has a storage cost); this usage is not

critical, but helps keep track of different cases. Inventory held by  depreciates

by disappearing at rate  ≥ 0. As in many papers in search theory, holdings of 
by  are constrained to the set {0 1}, which is obviously special, but allows one
to make salient points in a succinct way.7

Let  be the measure of  =  in the market, which is exogenous for

now, and  the measure of  with  in inventory, which is endogenous. There is

a standard matching technology: you meet someone at Poisson rate ; and each

meeting is a random draw from the population. In particular, if  is the measure

7In addition to middlemen papers like Rubinstein and Wolinsky (1987), to pick just a few

examples, {0 1} restrictions are imposed in the original search-equilibrium model of Diamond

(1982a), many of the monetary models cited in fn. 4, banking models like Cavalcanti and Wal-

lace (1999), OTC asset models like Duffie et al. (2005), labor models like Pissarides (2000) and

partnership models like Burdett and Coles (1997). We think this puts us in good company.
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of all market participants, the arrival rate of  for both  and  is  , so

 has no advantage over  in search. Given   0, when  and  meet they

always trade, since it does not affect their continuation values. Also, when  meets

 with  = 0 they trade unless   0 and || is big (more on this below). The
interesting question is, when with  = 1 meets , do they trade? As we will see,

the answer depends on fundamentals, including , and on beliefs.

If  gives  to , the latter pays  determined by bargaining with transferable

utility. Thus, if Σ is the total surplus available when  and  meet, they trade if

Σ  0, and ’s surplus is Σ, where  ≥ 0 is ’s bargaining power against ,
with  +  = 1. Letting  and  be value functions for  and ,  the

value function for  with  ∈ {0 1}, and ∆ = 1 − 0, we have
8

Σ = , Σ = ∆, and Σ =  −∆ (1)

Note the continuation values and threat points for  and  cancel in the surpluses,

so  and  do not appear. From these follow what we call the direct price, the

wholesale price, and the retail price, given respectively by

 = ,  = ∆, and  =  + ∆ (2)

When  with  = 1 meets  with valuation , they trade with probability

  =  (), where  is the reservation value:

 () =

⎧⎨⎩ 0 if   

[0 1] if  = 

1 if   

(3)

Clearly,  = ∆. Hence, the expected flow payoff for  is

 =




E +




E [ (∆) ( −∆)] + ̇ (4)

where  is the discount rate and and prices have been eliminated using (2). The

first term on the RHS is the arrival rate of  times ’s share of the surplus; the

8At this point we start subscripting variables by , including ,  and  even though they

are constant in this most basic version of the environment, so that the same expressions hold

when they are endogenous; we do not subscript  by  since it is fixed in all versions.
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second is the arrival rate of  with  = 1 times the probability they trade times

’s share of the surplus; the third is the pure time change in value.

Similarly, for ,

 =




E +
 ( − )



∆ + ̇ (5)

and for  ,

0 =




∆ + ̇0 (6)

1 =






Z ∞

∆

( −∆)  () + − ∆ + ̇1 (7)

Subtracting (7)-(6) and simplifying with integration by parts, we get

∆̇ = −




Z ∞

∆

[1−  ()]  +




∆ − + ( + )∆ (8)

The evolution of inventories held by  is

̇ =
 ( − )



− E (∆)



−  (9)

where E (∆) = Pr (  ∆) is the unconditional probability that and  trade.

The first term on the RHS is the measure of  without  times the rate at which

they buy it from ; the second is the measure of  with  times the rate at which

they sell it to ; the third is depreciation.

Equilibrium is defined as a path for (∆ ) satisfying dynamical system (8)-(9),

plus the standard side condition that the paths must be nonnegative and bounded,

and the initial condition 0 giving inventories at  = 0. A steady state is a constant

(∆ ) satisfying (8)-(9). Given an equilibrium (∆ ), or a steady state (∆ ),

all other variables follow, including payoffs, prices, trade volume, etc.

With no intermediaries,  = 0, equilibrium is obviously unique, with  and

 trading whenever they meet. With   0, first notice that the path of ∆ is

independent of . Then from (8)

∆̇

∆

=




 [1−  (∆)] +




 +  +   0
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implying ∆ must equal its steady state value ∀, since any other solution to (8)
diverges — a result that reappears in some, but not all, formulations below, and is

discussed more later. Given ∆, (9) implies

̇


= −

∙




+
E (∆)



+ 

¸
 0

so  converges monotonically to its steady state. Equilibrium is unique. There are

no dynamics due to self-fulfilling expectations.

3 The Main Model

Now let  face a participation decision, which is natural, and nice because it lets

us compare economies with and without middlemen while keeping the environment

otherwise the same.9 Then  and  can vary with time, while  and  are

constant. The entry condition  =  implies ̇ = 0. Combine the entry

condition with (5) to get

 = E +  ( − ) ∆ (10)

This lets us eliminate  from (8) and (9), resulting in a two-dimensional system∙
∆̇

̇

¸
=

∙
(∆)

(∆)

¸
 (11)

where

 (∆) = − 

E +  ( − ) ∆



Z ∞

∆

[1−  ()] 

+

∙
1− ( + )

E +  ( − ) ∆

¸
∆ − + ( + )∆

(∆) = 

∙
1− ( + )

E +  ( − ) ∆

¸
( − )

− E (∆)

E +  ( − ) ∆

− 

9The environment is the same with and without in the sense that it always has endogenous

market composition due to  entry. With  entry, we eliminate endogenous composition if we

eliminate  , but that case is still covered in Section 4.2; we tried entry by , too, but it is less

interesting, unsurprisingly, since type  is fairly mechanical here.
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Define the  locus and ∆ locus as the curves in (∆) space along which ̇ = 0

and ∆̇ = 0, with their intersections constituting steady states. Their slopes are

given by

∆



¯̄̄̄
∆̇=0

=
∆

©


R∞
∆
[1−  ()]  + ( + ) ∆

ª


(12)

∆



¯̄̄̄
̇=0

=
 +

1

∆ [ ( − )− ] +  [1−  (∆)] + 


−


 [ ( − )− ] +  (∆)
(13)

where

 =
( − ) 



½


Z ∞

∆

[1−  ()]  + ( + ) ∆

¾
+ [1−  (∆)] + ( + ) 2 + 

As both slopes are positive, there are potentially multiple steady states. This

can be illustrated in the degenerate case where  = ̄ with probability 1, even if

we are less interested in that than heterogenous valuations. In this the degenerate

case, there are three possible regimes: (i) ∆  ̄, so  with  = 1 and  trade

with probability  = 1; (ii) ∆  ̄, so they trade with probability  = 0; and

(iii) ∆ = ̄, and they trade with probability  ∈ (0 1).
Consider first   0, which can be interpreted as  being an asset rather than

a good. We have the following result (all proofs are in the Appendix):

Proposition 1 Suppose  = ̄ with probability 1 and   0. There exists ̃  0

and ̂  ̃ such that: (i) if  ∈ [0 ̃) there is a unique steady state and it has ∆  ̄;

(ii) if  ∈ (̂∞) there is a unique steady state and it has ∆  ̄; (iii) if  ∈ (̃ ̂)
there are three steady states, ∆  ̄, ∆  ̄, and ∆ = ̄.

Example 1:  = 1,  = 0008,  = 004,  = 005,  = 05,  = 07,  = 1,

 = 05,  = 01, ̄ = 1, and various .

Fig. 1 illustrates the result for Example 1. As the left panel shows, for  = 01

there is one steady state; for  = 02 there are three; and for  = 03, there is one.

The right panel is for a discrete-time version of the same specification, as analyzed
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in Section 4.3; it can be ignored for now, but it is perhaps interesting to see the

continuous and discrete formulation side by side.

Fig. 1a: Example 1. Fig. 1b: Discrete-time version.

Multiple steady states can be explained as discussed in the Introduction: If ∆ is

low,  with  trades it to , so the probability  has  is low, which encourages

 entry, making  high and making it easy for  to get , consistent with low ∆.

If ∆ is high,  with  does not trade it to , so the probability  has  is high,

which discourages  entry, making  low, consistent with high ∆. When both

 = 1 and  = 0 are consistent with equilibrium, as usual, so is some  ∈ (0 1).
Market liquidity — the ease with which agents can buy and sell  — is high (low)

when ∆ is low (high). Multiplicity means market liquidity is not pinned down by

fundamentals. Notice ̃  0 in Proposition 1, which means steady state is unique

for  = 0. This is also true for   0, which says that goods markets have a unique

steady state when valuations are homogeneous:10

Proposition 2 Suppose  = ̄ with probability 1 and   0. Then there is a

unique steady state and it has ∆  ̄.

10The system in the text is derived assuming  and  trade. That is fine if   0, or if   0

and || is not too big, since then steady state is consistent with ∆  0, so  and  must trade.

However, if   0 and || is too big,  and  will not trade, and any  with  would dispose of

it; in this case, in the only steady state  does not trade. For now, if   0 we simply assume

|| is not too big, and return to the issue in Section 4.3.
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While our specification is somewhat different, the above results are consistent

with Nosal et al. (2019), but things change when we depart from a degenerate

. First, if  is degenerate, multiplicity cannot arise if  ≤ 0 because  ’s only
alternative to trading with  is to keep , but this “buy and hold” strategy only

makes sense if   0. With nondegenerate  there is a different motive for  to

pass on trade with : if the match-specific  is low,  may want to hold out for

a higher . This is standard fare in search theory, and does not rely on   0,

although higher  helps in the same way that, say, higher unemployment benefits

help support higher reservation wages in labor markets. So multiplicity does not

require   0 but one can say that   0 might make it more likely.

There are other reasons to go beyond degenerate . First, when there are

multiple steady states, as in Fig. 1, it is hard to characterize dynamics around the

middle one because the  locus is horizontal.11 Also, with disperse ,  and  are

only indifferent to trade in the rare event  = ∆ (i.e., most of their interactions are

strict best responses). Also, if ∆ varies over time, intermediation activity varies,

but with degenerate  we get bang-bang situations (i.e.,  is almost always 0 or 1),

while with disperse  we can get trade volume varying smoothly over time. All of

this is verified below, starting with the claim that multiplicity can arise with   0

once  is nondegenerate.

Example 2:  = 096,  = 0001,  = 001,  = 0055,  = 04,  = 095,

 = 1,  = 01,  = 0225,  = −0001 and

 () =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 ≤  ≤ 

1 + (2 − 1) ( − )  (− ) if    ≤ 

2 + (3 − 2) ( − )  (− ) if    ≤ 

3 + (1− 3) ( − )  (− ) if    ≤ 

(14)

with  = 1,  = 102,  = 238,  = 24, 1 = 001, 2 = 05, and 3 = 055.

Fig. 2a shows the situation for Example 2, with   0 and a distribution of 

that is disperse but concentrated around two values, as is useful for making a point

11As Nosal et al. (2019) say: “Whether this [equilibrium] converges to steady state, or to a small

cycle around it, is hard to say from the numerical output, and checking local stability directly is

hindered by the [relevant objects] being nondifferentiable.”
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even if the examples below use a simpler (uniform) distribution of . The point is

that there are three steady states, (0156 0966), (0177 1012) and (0198 1071).

Hence, multiplicity obtains with   0, with intuition similar to that laid out above:

if ∆ is high  only trades with  when  is high, so the probability  has  is

high, which reduces entry by  and makes it hard to  to replenish inventory,

justifying a high ∆; while if ∆ is low, and so on.

Fig. 2a: Example 2, Steady States. Fig. 2b: Example 2, Phase Plane.

As mentioned, higher ∆ means the market is less liquid. To consider related

variables, the (average) markup is the ratio of the retail and wholesale prices,

 =

∞
∆

 ()

1− (∆)


=

R∞
∆
( + ∆)  ()

∆ [1−  (∆)]


The spread is the difference between these prices,

 =

R∞
∆
( + ∆)  ()

1−  (∆)
− ∆

Trade volume is

 =



+





Z ∞

∆

 () +
 ( − )




These are relevant because the markup, spread or volume are used as measures

of frictions in decentralized markets in both theory (e.g., Weill 2008; Lagos and

Rocheteau 2009) and empirical work (e.g., Brennan et al. 1998).
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Across steady states in Fig. 2a, the markup, spread and volume are (  ) =

(16941 1540 00372), (18835 1805 0030) and (21138 2157 0025). At higher

∆, both retail and wholesale prices are higher, but on net the markup and spread

rise, while volume falls, as might be expected in a less liquid market. Later we

check how these variables behave over time, not just across steady state.

To begin the dynamic analysis, consider Fig. 2b, which zooms in around the

three steady states. It is easy to check that the lower and upper steady states

are saddle points, and their stable (unstable) manifolds are shown in blue (pink).

For these parameter values the middle steady state is a sink, with branches of the

unstable manifolds of the other steady states spiraling in towards it. There are

multiple dynamic equilibria: starting from any 0 in some range, equilibrium can

converge to the upper or lower steady state, or it can spiral into the middle steady

state, and what happens depends on initial beliefs as given by ∆0.

Example 3 (saddle loop bifurcation):  ∼  [0 2],  = 1,  = 0001,  = 005,

 = 05,  = 075,  = 1,  = 005,  = 01,  = 0108 and various .

Fig. 3a shows the situation for Example 3, where again there are three steady

states, but now the middle one is a source, not a sink. Again, starting from any

0 in some range, there are many equilibria depending on ∆0, but now we cannot

spiral into the middle steady state. This suggests the possibility of cycles which we

now explore using bifurcation theory.12

The first case involves a saddle loop (also called a homoclinic) bifurcation. In

Fig. 3a, with  = 0018, the blue stable manifold going to the lower steady state

is inside the pink unstable manifold. In Fig. 3b, with  = 0013, the blue stable

manifold is outside the pink unstable manifold. By continuity, for some ∗ ∈
(0013 0018) there exists a homoclinic orbit — i.e., the unstable and stable manifold

12References on the dynamical system theory used here include Guckenheimer and Holmes

(1983) and Kuznetsov (2004), while Azariadis (1993) is a standard source for economic applica-

tions. We employ the Hopf bifurcation, as used to get continuous-time cycles in a search model

by, e.g., Diamond and Fudenberg (1989), and the saddle loop bifurcation, used by, e.g., Coles and

Wright (1998) or Mortensen (1999). Sniekers (2018) uses the Bogdanov-Takens bifurcation, not

previously used in search theory, but used in a macro model by Benhabib et al. (2001). While

Sniekers (2018) approach may have some advantages, we find it less tracatbale, and in any case

we get what we are after with our approach.
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coincide — as shown in Fig. 3c. As the middle steady state inside the homoclinic

orbit is a source for these parameters, and other obits inside it cannot get out,

the inescapable conclusion is this: starting inside the homoclinic orbit, since the

system cannot escape and cannot go to the middle steady state, it must go to a

cycle. The green curve in Figure 3d, drawn for  = 0016, is a trajectory starting

near the middle steady state, and the pink curve is the unstable manifold of the

lower steady state, both of which approach a limit cycle.

Fig. 3a: Example 3,  = 0018. Fig. 3b: Example 3,  = 0013

Fig. 3c: Example 3, homoclinic orbit Fig. 3d: Example 3,  = 0016.

The mechanics of saddle loop bifurcations are clear from the graphs, but more

formally the Andronov-Leontovich theorem says: Consider a system ẋ = (x )

with x ∈ R2 and a parameter  ∈ R1 where  is smooth. Suppose at  = ∗

there is a steady state ∗ that is a saddle point that has a homoclinic orbit with
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another steady state inside it. Under mild regularity conditions (Kuznetsov 2004,

Section 6.2), ∀ in a nondegenerate neighborhood of ∗ there exists a neighborhood
of the homoclinic orbit and ∗ in which a unique limit cycle bifurcates from the

homoclinic orbit (i.e., the cycle emerges as  crosses ∗). The theorem also gives

conditions under which cycles are stable or unstable, but the result to emphasize

is that they exist for all  in a neighborhood of ∗ — i.e., for a range of parameter

with positive measure — even if the homoclinic orbit exists only at ∗.

Time series from this cycle are shown in Fig. 3e. While the examples are not

meant to be calibrations, only to show mathematical possibilities, we mention that

with  = 0016 a period corresponds to roughly 1 quarter, giving the cycle a not-

unrealistic duration of about 7 years. Having said that, there is as usual a tradeoff

in the sense that higher frequency cycles generally have lower amplitude. In any

case, notice entry and volume lead ∆, while inventories and output lag, ∆. Also,

the markup (spread) is negatively (positively) correlated with ∆.

Fig. 3e: Example 3,  = 0016, Time Series.

Example 4 (Hopf bifurcation, subcritical):  ∼  [0 3],  = 1,  = 00001,

 = 00825,  =  = 1,  =  =  = 05,  = 04 and  = 033.

15



Fig. 4a: Example 4,  = 00825. Fig. 4b: Example 4,  = 00875.

An alternative approach uses the Hopf bifurcation. Fig. 4 is for Example 4,

again with three steady states, and blue (pink) curves showing the stable (unstable)

manifolds. The middle steady state can be a sink or a source. As  increases there

is a Hopf bifurcation at ∗ = 00851 where the trace of the system is 0: for   ∗

the middle steady state is a sink; for   ∗ it is a source. With  = 00825 in

Fig. 4a, the stable manifold spirals away from an unstable cycle and goes to the

upper steady state, and shown in green is a trajectory spiraling away from the cycle

toward the sink. As  increases above ∗ the sink becomes a source and the cycle

disappears, as shown in Fig. 4b for  = 00875. In this example the bifurcation is

subcritical, meaning a small increase in  around ∗ can cause the system to deviate

away from the middle steady state.

Fig. 4c plots time series with  = 00825. Volume, output and entry by  are

negatively correlated with ∆, while inventories are positively correlated with ∆.

Notice that over the cycle  and  trade with positive probability when ∆  3,

where ̄ = 3 is the upper bound of the support, and do not trade at all when∆  3.

This can be described as recurrent intermediation freezes and thaws.13 The market

does not shut down during a freeze, since  still trade with , but  cannot trade

13See Gu et al. (2022) and references therein for a discussion of freezes in asset and credit

markets, as well as attempts to model them formally that are very different from our approach —

e.g., using stochastic (sunspot) equilibrium in discrete time.
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with  , who are rationally holding out for better times. Since  does not trade

with  during a freeze, Fig. 4c only shows the markup and spread during thaws.

Fig. 4c: Example 4 Time Series.

Example 5 (Hopf bifurcation, supercritical):  ∼  [0 2],  = 1,  = 10−5,

 = 2,  = 1,  = 0  = 1,  = 02,  = 06 and  = 03.

Fig 5a: Example 5,  = 0055. Fig. 5b: Example 5,  = 00562.

Fig 5 is for Example 5, with a bifurcation at ∗ = 00557. In Fig 5a, with

 = 0055, the middle steady state is a sink and the unstable manifold of the lower

steady state converges to it. As  rises past ∗ the sink becomes a source with
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a stable limit cycle around it. In Fig. 5b, with  = 00562, the green curve is a

trajectory spiraling away from the source, converging to a cycle. The unstable

manifolds also converge to a cycle. Fig. 5c plots time series, like Fig. 4c, with a few

differences — e.g., the variability of the markup is smaller, and while there are again

freezes, they are shorter, and the series are smoother. Also, similar to the saddle

loop, with a Hopf bifurcation cycles exist for a set of parameters with positive

measure, not just at the bifurcation point ∗ (Kutznesov 2004, Theorem 3.4).

In terms of economics, these examples show it is not hard to find parametric

specifications with cyclic equilibria due to self-fulfilling expectations about trading

and entry decisions. We do not claim that actual data are best explained by such

cycles in isolation — presumably observations from the real world are driven at least

in part by fundamentals, including shocks to technology, policy, etc. We do suggest

this: when simple models deliver equilibria with endogenous variables fluctuating

purely due to beliefs, it lends credence to the idea that markets in real economies

might be susceptible to similar phenomena. Therefore we think it is useful to

analyze models with natural ingredients, like inventories and entry decisions, to see

if and when they display such phenomena.

Fig. 5c: Example 5,  = 00562, Time Series.

18



4 Other Issues

4.1 Welfare

In the above specification, with entry by , steady state welfare is:

 =  [ + ( − )1 + 0]

=



E +





Z ∞

∆

( −∆)  () +
 ( − )


∆+  (− ∆)

Thus,  includes the surplus when  trades with , when  trades with  and

when  trades with , plus the flow payoff from dividends minus the loss due to

depreciation.

Different steady states are distinguished by their ∆, with higher ∆ reducing

entry. The first term falls with ∆ because the number of meetings between  and

 falls. The second term is ambiguous because while the surplus in these meeting

falls the number of meetings can go either way. The third term is also ambiguous

because the number of meetings can go either way. The last term is ambiguous

because the total dividend and the total depreciated value both increase in ∆. In

most of our examples,  decreases with ∆, but in Example 5 with  = 00562, 

increases in ∆.

Whether welfare is lower on the cycle depends on parameter values as well as

where the cycle starts. Consider a case with three steady states, let ,  and

 be welfare in the lower, middle and upper ones, and let  be welfare in a

cycle. In Example 3, if a cycle starts at the highest∆ then       ,

while if it starts at the lowest ∆ then        . In Example 5, if a

cycle starts at the highest ∆ then       , while if it starts at the

lowest ∆ then      . The conclusion is that welfare comparisons

are generally ambiguous, as is no surprise, based on previous work in the area.

In terms of efficiency of intermediation, in general, can be higher or lower with

middlemen than without middlemen, as in, e.g., Nosal et al. (2015,2019), Masters

(2007,2008), Farboodi et al. (2019) and Gong (2023). The reason is that while 

perform a real service, their activity depends on bargaining power, and they like to
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buy low and sell high; hence, they may operate even if it is not socially efficient.14

4.2 Entry by Middlemen

With endogenous participation by  instead of , the dynamical system is de-

scribed by (4)-(9) with constant , time-varying  and entry condition 0 =

()∆ = . Combining this condition with (8) we get

∆̇ = −

∆

Z ∞

∆

[1−  ()]  +  − + ( + )∆

This is a first-order differential equation, with ∆̇∆  0. Hence, the results are

similar to the version with no entry in Section 2: the unique equilibrium has ∆

constant at its steady state level. Also,

̇ =  −  ( +  + )

∆
−  [1−  (∆)]

∆
− 

which implies ̇  0, so  converges to steady state.

While  adjusts during the transition ∆ does not change, the way payoffs do

not vary in Pissarides (2000) even while unemployment adjusts to steady state.15

We can also relate the results to Rocheteau andWright (2005), where buyers choose

money balances before entering the market. If seller entry is endogenous, there can

be multiple equilibria, since there is a complementarity between buyer and seller

strategies; but if buyer rather than seller entry is endogenous, there cannot be mul-

tiple equilibria since, heuristically, the same agents are making the money holding

and entry decisions. A similar intuition applies here, although the mechanism is

different, since it is the complementary between the trading strategy of  and

entry decision of  that matters. Still, the idea is that there is no multiplicity with

14We do not pursue welfare further because it has been studied elswhere, and because the

results are similarly ambiguous. Still, to illustrate the possibilities, let0 be welfare with  = 0,

including only the surplus from trade between  and , and consider a case with three steady

states. Letting ,  and  be as in the text, we have: In Example 1,      

0. In Example 4 with  = 00825,     0   . There are also examples with

  0     . In Example 5 with  = 00562,       0, which shows

that, when  is high, more inventories and a less liquid market can entail higher welfare.
15While this is also true in Section 2, the economics is perhaps more clear here because entry

by  is similar to entry (vacancy posting) by firms in Pissarides (2000).
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entry by since the same agents are making the trading and entry decisions (more

on this below).

4.3 Discrete Time

Now consider a discrete-time model, with  the meeting probability,  the depreci-

ation probability and  ∈ (0 1) the discount factor. The surpluses are

Σ = , Σ = (1− )∆+1, Σ =  − (1− )∆+1

where again ∆ = 1 − 0. Now  ≡ (1− )∆+1 is the reservation value

satisfying Σ = 0. Prices are as in (2) except  replaces ∆.

Letting  () be as in (3), the discrete-time value functions are

 =




E +




 ()  ( −) + +1 (15)

 =




E +
( − )



 + +1 (16)

0 =




 + 0+1 (17)

1 = +






Z ∞



( −)  () + (1− )1+1 + 0+1 (18)

Subtracting (17) from (18) and simplifying, we get a difference equation analogous

to the differential equation (8),

−1 = (1− )

½
+ +





Z ∞



[1−  ()]  − 





¾
 (19)

Similarly, we get a law of motion analogous to (9),

+1 = (1− )

∙
1− 



E ()
¸
+ (1− )

( − )



 (20)

With no entry, one can check −1  1. Hence (19) has a unique equi-

librium, which is the steady state . Also, +1 ∈ (0 1), so  converges to

the steady state . Now consider entry by  with a per-period cost, which re-

duces to exactly (10) in the benchmark model. Given initial 0, equilibrium is a

nonnegative, bounded path for ( ) satisfying (19)-(20), written compactly as∙
−1
+1

¸
=

∙
( )

( )

¸
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Now the  locus satisfying  =  () and the  locus satisfying  =  ()

both slope up in () space indicating the possibility of multiplicity.

Example 6: The same as Example 1 plus  = 02.

There are three steady states (09007 04213), (1 04421) and (14826 04777),

similar to the continuous time specification. However, the discrete time dynamics

are rather different. Let us focus on a two-cycle, oscillating between a liquid regime

with low  and an illiquid regime with high , denoted
¡
 

¢
and (  ).

These solve ∙




¸
=

∙
( )

( )

¸
and

∙




¸
=

∙
(  )

(  )

¸
 (21)

A solution is
¡
 

¢
= (09800 04511) and

¡
  

¢
= (10065 04297), shown

in Fig. 1b. Fig. 6 shows the times series. In the liquid regime  is low, making 

more likely to trade with , and  is high because and  traded less last period,

while  is low because low  and high  discourage entry by . The illiquid regime

is just the opposite.16

Fig. 6b: Example 6, Time Series.

Next, consider entry by  . Then (15)-(20) are the same, but  is fixed while

16Prices are also shown in Fig. 6b. The direct price is constant over time, depending only on

fundamentals, but the wholesale and retail prices move with . The spread can go either way, but

here it moves against . This is all broadly consistent with the data discussed in Comerton-Forde

et al. (2010), and other stylized facts like inventories being more volatile than output. While

this is, again, obviously not a calibration, the finding that it is qualitatively consistent with

observations may lend further credence to the story.
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 is endogenous. Now (16) yields  in terms of ,

 =  (22)

From (22),  depends only on , while with entry by  it depends on  and .

Substituting (22) into (19), after some algebra we get −1 =  (), where

 () ≡  (1− )

½
++





Z ∞



[1−  ()]  − 

¾
 (23)

Now −1 depends only on , while with entry by  it depends on  and .

The univariate system −1 =  () determines the path for , from which

we get , , etc. Steady state solves  =  () as long as it implies   ≥ 0,
both of which hold iff  ≥  ≡ ( + ) (we also need  ≤  but

that never binds). A solution to  =  () ≥  is a steady state with  active.

One can check  (0) = ∞, 0 ()  1 and 00 () ≥ 0. Also, ∀  ̄  is linear

with slope  (1− ). This is shown in Fig. 7a, from which it is clear that there

exists a unique fixed point ̂. We can have ̂  ̄, on the linear part of  (), or

̂  ̄, on the nonlinear part. If 0(̂)  −1 then standard methods imply there
are cycles. There is a threshold 1 such that 

0(̂)  −1 iff   1 (we do not

know if 1  0 or 1  0 in general, but always found 1  0 in examples). We

now show that 0(̂)  −1 and ̂ ≤  are possible.

Example 7:  ∼ [0 07],  = 1,  = 001,  = 099,  =  = 1,  = 1,

 = 01,  = 0001, and various .

Fig. 7a depicts  () in Example 7. As  decreases, the slope at steady state

falls. One can check 0(̂)  −1 and ̂   when  = −01. Hence there is a
2-cycle and possibly cycles of higher order. The right panel of Fig. 7b plots the

second and third iterates, 2 () and 3 (). A fixed point of 2 (3) other than

a steady state is a 2-cycle (3-cycle). As shown, there exist a pair of 3-cycles. The

existence of 3-cycles implies the existence of -cycles ∀ plus chaotic dynamics, by
the Sarkovskii and Li-Yorke theorems.
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Fig.7a: Example 7, Different . Fig.7b: Example 7, 2 and 3 Cycles,  = −01.

Therefore, this discrete-time model has many dynamic equilibria, and is actu-

ally easy to analyze, at least with entry by  , which implies a univariate system.

Moreover, multiplicity and dynamics emerge with entry by  , counter to our in-

tuition about having entry by one type and a different decision by another type.

However, these equilibria vanish as the period length shrinks:

Proposition 3 In the discrete-time model with entry by  , where  denotes the

length of a period, there exists   0 such that for all  ∈ (0 ) no cycles exist.

Oberfield and Trachter (2012), Rocheteau and Choi (2021) and Rocheteau and

Wang (2023) in different models show cycles vanish as the discrete period length

shrinks, motivating us to check which results are robust and which are not. While

discrete time with entry by  is tractable and delivers interesting results, one

might worry this is an artifact of the period length. Discrete time with entry by 

is less tractable, but more robust: interesting dynamic equilibria still exist when the

period length shrinks, as Section 3 shows — i.e., working directly with continuous

time we established the existence of cyclic equilibria.

4.4 Inventories Without Middleman

Middleman are not necessary for our results; what actually matters is that there are

both entry and inventory decisions. The middlemen framework is a very natural
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way to capture this, with entry decisions by  and inventory/trading decisions by

 . Still, an environment can be designed with no type  , so  and  must trade

directly, but now  has the option to consume  for payoff  or store it for return ,

which can play the role of ’s option to trade  or store it in the main model. One

can interpret storage by  as inventory, or savings, as opposed to consumption.

This inventory/savings option is only viable when   0, which is a reason one

might prefer the specification with , where interesting results can occur for  ≤ 0
or   0. In any event, to be clear, the purpose of this extension is to show it is

possible to get similar results without  , even if the model with  is better on

some dimensions.

As usual ’s payoff is match specific,  ∼  (), and  and  trade as long

as   0. If  chooses not to consume , it is inventoried for flow return  and

depreciates at rate . Assume for simplicity that if  decides to store  the decision

is irreversible — it is not possible to later consume it and go back on the market, so

 is off the market until  depreciates. This restriction does not bind in, but could

bind out of, steady state. While it is not especially natural, it lets us make the

point relatively easily. Note that no such restriction is needed in the model with

 , which may be another reason to prefer that version.

Normalize the measure of  to 1, and let  enter the market by paying .

Let , 0 and 1 be the value functions of ,  without inventory and  with

inventory. When trading with , if  inventories  the surplus is ∆ = 1−0, and

if  consumes  the surplus is . Then  consumes  if  exceeds the reservation

value = ∆. If  is ’s bargaining power, then

 =
 (1− )

1 + 
(1− )

∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇

0 =


1 + 


∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇0

1 = − ∆+ ̇1

This leads to

∆̇ = ( + )∆− +


1 + 


½
∆+

Z ̄

∆

[1−  ()] 

¾
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after integration by parts. The law of motion for inventories is

̇ = −+  (1− )

1 + 
 (∆)

and the entry condition by  implies

 (1− )

1 + 
(1− )

½
∆+

Z ̄

∆

[1−  ()] 

¾
= 

Consider first a degenerate distribution of . That leads to

∆̇ = ( + )∆− +


1 + 
 [ + (1− )∆]

̇ = −+  (1− )

1 + 
(1− )

 =
 (1− )

1 + 
(1− ) [ + (1− )∆]

where  denotes ’s probability of consuming . In terms of steady state, there

are three regimes with   0 so the market does not shut down,  = 1,  = 0

and  ∈ (0 1), plus a regime with  = 0. In the Appendix we construct the set

of parameters that make  a best response to itself, and check whether   0 or

 = 0, as well as  ∈ [0 1].
Example 8:  = 01,  = 001,  = 1,  = 073,  = 001 different  and .

The results are shown in Fig. 8a, partitioning parameter space into 4 regions

that support the different regimes. The pattern is general, and its properties are

derived as Claim 1 in the Appendix, while the picture is drawn for the specification

in Example 8. In the gray area  = 0, so the market shuts down. Otherwise,

  0 and: in the blue region  = 1 since  is high relative to ; in the brown

region  = 0 since  is low relative to ; in the green region there are three steady

states,  = 0,  = 1 and  ∈ (0 1). Hence multiple steady states can exist, as in
the main model, with  , with a similar intuition: if  is high  is often without

, making it easier for  to trade, making  big and  more inclined to consume

; but if  is low, and so on.17

17It is tempting so suggest that this has a Keynesian flavor, with  denoting the marginal

propensity to consume. It does have the feature that more consumption (higher aggregate de-

mand) stimulates more production (higher aggregate supply) as a self-fulfilling prophecy.
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Fig. 8a: Regions/regimes without  . Fig. 8b: Regions/regimes with  .

If Fig. 8a is useful, Fig. 8b provides a similar picture for the model with  ,

drawn for Example 1 in Section 3. However, the interpretation is: here  and 

always trade;  and  do not trade the grey area and trade in other regions;

and those other regions differ in the probability  that  trades with . We did

not draw this graph earlier because deriving the regions with three types is more

cumbersome — Fig. 8b is done numerically — and because these pictures are only

relevant for degenerate , while the preferred specification has disperse . Still, the

figures are remarkably similar, and Fig. 8b nicely tightens a loose end in Section 3,

where it was simply assumed that  is above some lower bound to guarantee 

and  trade; now the boundary of grey area tells us just how low  can go before

 and stop  trading. More generally, these pictures indicate that steady state

exists for all parameters, although for some parameters it is possible that certain

agents stop trading.18

Example 9:  is as in (14) with  = 03,  = 031,  = 048,  = 05, 1 = 001,

2 = 049, 3 = 05,  = 046,  = 0046,  = 1,  = 075,  = 001 and  = 01.

18In fact two things can go wrong when trying to construct an equilibrium where  and 

trade: we can violate ∆ ≥ 0 or  ≥ 0. In Fig. 8b, what binds is  ≥ 0 when we hit the grey area
as we lower  for small , since we hit it before we reach  = 0 and   0 means ∆  0. For

higher  what binds is ∆ ≥ 0 when we hit the grey area as we lower .
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Fig. 9a: Example 9,  = 0015. Fig. 9b: Example 9,  = 0020.

Going beyond steady state, the model without  also has cyclic equilibria. As

 varies in Example 9 there is a Hopf bifurcation at ∗ = 00174. Fig. 9a shows

 = 0015, where there are four steady states, and the lowest is a sink, and the

unstable manifold of the next lowest steady state converges to the lowest one. As

 increases past ∗ the sink becomes a source, with a stable limit cycle around it.

Fig. 9b shows the case with  = 0020, with the green curve showing a trajectory

spiraling away from the source and converging to a cycle. The unstable manifold

also converges to a cycle. Since cycles emerge when  increases, ∗is supercritical.

Finally, we check on the general intuition offered above, that multiplicity and

cycles emerge when agents on one side make a inventory or savings decision while

those on the other side make an entry decision. The Appendix considers a version

of this model, without  , where  makes both an entry decision and inventory

decision and proves as Claim 2 that equilibrium is unique. The Appendix also

considers a version, without , where  makes both an entry decision and inventory

decision and similarly proves as Claim 3 that equilibrium is unique. This is all

consistent with our general intuition.

5 Conclusion

This paper studied dynamic models of inventories, focusing on intermediated trade,

and allowing heterogeneous buyer valuations. We showed there are multiple steady
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states, and endogenous cycles, where entry, trading strategies, liquidity, prices and

other endogenous variables fluctuate. These fluctuations are driven by strate-

gic considerations, not increasing returns, as in some other models, or the self-

referential nature of acceptability, as in monetary economics. They are possible for

inventories with a positive return or a storage cost — i.e., for asset or goods markets.

For asset markets, this is consistent with the venerable view that financial interme-

diaries are prone to instability or volatility, while for goods markets, it is consistent

with the fact that retail trade differs dramatically across economies, as discussed

in the Introduction. We analyzed discrete- and continuous-time specifications. In

some cases (entry by middlemen) discrete time was tractable and gave interesting

results, but they are not robust to period length; in other cases (entry by sellers),

cyclic equilibria are possible in discrete and continuous time.

As mentioned above, the relevance of the findings is this: while it may be hard to

account for data based purely on self-fulfilling prophecies, when simple and natural

models display such outcomes, it may make one more inclined to think that actual

economies can, too. This is consistent with Diamond’s (1982b) view, but to get the

desired results he needed increasing returns, which he called an externality. As he

said, “this externality involves positive feedback: increased production for inventory

makes trade easier; easier trade makes production for inventory more profitable and

therefore justifies its increase. This positive feedback... implies the possibility of

multiple equilibria.” His models do not capture inventory behavior the way we do

— there are no middlemen — but, interpreted broadly, the spirit is similar.

One might say that when strategic considerations that arise naturally with in-

termediation are introduced, we can dispense with increasing returns and still get

multiplicity and complicated dynamics. To put this in context, Diamond (1984)

got money into his framework with a CIA (cash-in-advance) restriction, and again

increasing returns led to multiplicity. Subsequent developments showed that mod-

eling the microfoundations in more detail means the CIA constraint is not needed to

get valued fiat currency, and that further implies increasing returns are not needed

to get natural multiplicities and dynamics in monetary economics, as emphasized
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by, e.g., Kiyotaki and Wright (1993) or Johri (1999). What we think is a general

conclusion is that markets with frictions are prone to volatility or instability, in the

sense that there can be multiple steady states and cyclic dynamic equilibria arising

as self-fulfilling prophecies. This is well know in monetary models. Our results

show that real models with inventories have similar properties.

In other words, once the exchange process is modeled in more detail, and ex-

change is not as simple as it is in Diamond’s early work, where everyone trade

with everybody, there is a role for institutions that facilitate this process. Two

such institutions are money and middlemen. Once they are modeled explicitly, one

can dispense with mechanical assumptions like increasing returns and get similarly

interesting results.
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Appendix

Proof of Proposition 1: First notice that, with  = ̄, (8) and (9) reduce to

( +  + )∆− −  (̄ −∆) +  ( + ) ∆


= 0 (24)

+



− ( − )

µ
1−  + 



¶
= 0 (25)

where

 =
̄ +  ( − ) ∆




In the region where ∆  ̄, where  = 0, combine (24) and (25) to eliminate  ,µ
 +  +



 − 

¶
∆ =  (26)

This implies

∆


= − ∆

( − )
2
( + ) + ( − ) 

 0

Thus we transform system (24)-(25) to (25)-(26). As (26) is downward sloping and

(25) upward sloping, there is at most one steady state with ∆  ̄. Also, from

(26), steady state exists in this region only if   0.

In the region where ∆  ̄, where  = 1, combine (24) and (25) to get

( +  + )∆ = +
 (̄ −∆) + ( + ) ∆

 ( +  − )
[ ( − )− ] 

This implies

∆


= −  (̄ −∆) + ( + ) ∆

 +  +
[+(+)]+[(−)−]

(+−)

 ( + ) + 

 ( +  − )
2
 0 (27)

Again, since (27) is downward and (25) upward sloping, there is at most one steady

state with ∆  . Similarly, when ∆ = ̄ and  ∈ (0 1), the  locus is flat and ∆

locus upward sloping. Hence, there again is at most one steady state.

For existence, it is easily verified that ∆ and  loci are upward sloping and the

∆ locus is flatter than the  locus in regions where ∆ 6= ̄. Also, the ∆ locus shifts

up when  increases. For  = −, the ∆ locus goes through the origin. For
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  −, the ∆ locus has a positive intercept. At  = , ∆ is positive

and finite on the ∆ locus. The  locus goes through ( 0), where

 ≡ 

µ
1−  + 

̄


¶


∙
 +



̄
+ 

µ
1−  + 

̄


¶¸


strictly first increases, then becomes flat and goes to∞ as  goes to  (+ ) 

. Hence the loci have at least one intersection. In particular, if there is a steady

state at ∆ = ̄, there are two more steady states, one with ∆  ̄ and one with

∆  ̄. As  shifts the ∆ locus, there exist ̃ ̂ ≥ 0 with the stated properties. ¥
Proof of Proposition 2. Suppose  buys  from  and does not sell it to .

If   0 this “buy and hold” strategy has a negative payoff which is dominated by

not buying . ¥

Proof of Proposition 3. Let the length of a period be . Then , , ,  and

 are functions of . As usual, let:

 = lim
→0

 ()
−1 − 1


,  = lim
→0

 ()


,  = lim

→0
 ()


,  = lim

→0
 ()


,  = lim

→0
 ()



The equilibrium condition can be rewritten − =  ( ), where

 (;) ≡  () [1−  ()]

½
 () ++

 ()



Z ∞



[1−  ()]  −  ()

¾


(28)

As → 0, this converges to the continuous-time model.

First we show steady state is unique. From (28) we get




=  () [1−  ()]

½
1 +

 ()



∙
−1 +  ()− 1



Z ∞



[1−  ()] 

¸¾


(29)

As the term in square brackets is negative,    () [1−  ()]  1 ∀, so
 crosses the 45 line at most once: if it exists steady state is unique. With ̂ ()

denoting steady state as a function of period length, it solves  =  ( ), which

we rearrange as

2 [1−  ()−  ()  ()]

=  () [1−  ()]

½
[ ()−  ()]+

 ()



Z ∞



[1−  ()] 

¾
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For any   0, the LHS is 0 at  = 0 and the RHS is strictly positive at

 () = 0. Hence ̂ ()  0 ∀  0. Dividing by  we get

2
1−  ()−  ()  ()



=  () [1−  ()]

½
 ()−  ()


+

 ()







Z ∞



[1−  ()] 

¾


As  → 0, the LHS approaches 2 ( + ) and the RHS approaches (− ) +





R∞

[1−  ()] . At  = 0, the LHS is 0 and the RHS is strictly positive.

Hence, ̂ (0) 6= 0. Finally, evaluate (29) at  = 0 and ̂ (0) to get lim→0 ̂0 =

1. By the continuity of , there exists a cutoff   0 such that ̂ ()  −1
for    implying a 2-cycle, and ̂ () ≤ −1 otherwise. As is standard, if a
2-cycle does not exist, no cycles of any order exists. ¥

Proof of Claim 1: As discussed in the text there are 4 cases. We consider each

in turn.

Case 1:  = 1 and   0. For  = 1 we need   ∆, which easily reduces to

 ≥ 1 () ≡ +  (1− )

 +  + 
(30)

Given  = 1,  = 0. Finally,   0 reduces

 ≥ 

 (1− )
≡ 0 (31)

Case 2:  = 0 and   0. Now  = 0 requires ∆ ≥ , which reduces to

  max {2 ()  3 ()} (32)

where 2 () ≡  ( +  + ) and

3 () ≡  (1− ) (− )− 

2 (1− )  ( +  + )

+

©
[ (1− ) (− )− ]

2
+ 4 (1− ) ( +  + )

ª05
2 (1− )  ( +  + )



Notice 3 is increasing, concave, 3 (0) = 0 and 3 (0) = 0 where 0 is given

in(31). Then  ≥ 0 reduces to

 
 ( + )

 (1− )
≡ 0 (33)
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We also need  ≤ 1 and   0 but these are redundant given the other conditions.
Case 3:  ∈ (0 1) and   0. For  ∈ (0 1) we solve for ∆ =  for  and

check that 0 ≤  ≤ 1 holds iff  ≥ 1 () and 0    1 iff   3 (), which

also guarantees   0. Notice that when two pure-strategy steady states exist, as

usual, the mixed-strategy steady state does, too.

Case 4:  = 0. We need  ≤  which reduces to a simple parameter condition.

Here obviously  = 0 so we only need to check the best response condition for ,

even if it is only relevant off the equilibrium path, since  = 0 means  never

actually gets to decide to consume or store  in equilibrium. For any  ∈ [0 1],
∆ =  ( + ) as ’s trading probability is 0. For  = 1, ∆   iff    ( + )

and  ≤  iff  ≤ 0. For  = 0, ∆   iff   ( + ) and  ≤  iff  ≤ 0.

For  ∈ (0 1),  =  ( + ) and  ≤  iff  ≤ 0. Altogether,  = 0 holds iff

 ≤ 0 and  ≤ 0. ¥

Proof of Claim 2: Consider the model without  where  decides whether to

enter and whether to consume or store . We have

 =
 ( − )

1 + 
(1− )

∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇

0 =


1 + 


∙Z 

0

∆ () +

Z ̄



 ()

¸
+ ̇0

1 = − ∆+ ̇1

Following the usual procedure, we get

∆̇ = ( + )∆− +


1 + 


½
∆+

Z ̄

∆

[1−  ()] 

¾
̇ = −+  ( − )

1 + 
 (∆)

 =


1 + 


∙Z 

0

∆ () +

Z ̄



 ()

¸
Again, using the third equation to eliminate  from the others we have a bivariate

system

In particular, the entry condition implies

∆̇ = ( + )∆− + 
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which has a unique bounded solution, the steady state, ∆ = (− )  ( + ). Then

 =





∙Z 

0

∆ () +

Z ̄



 ()

¸
− 1

is also a constant, in and out of steady state, while inventories converge to steady

state following the ̇ equation. Hence there is a unique equilibrium. ¥

Proof of Claim 3: Now suppose  decide whether to produce for themselves at

cost  and enjoy , or enter the market and produce when they meet  at the same

cost , or not produce. Let 0 and 1 be the value functions of  without and with

inventory, and  the value of  in the market. Let  be the total measure of

sellers and  those in the market. For simplicity, suppose  is degenerate. Then

0 = max {1 −   0}
1 = −  (1 − 0) + ̇1

 =


 + 
 [ − − ( − 0)] + ̇

Now we can proceed as in Claim 1 and consider four regimes, although now we do

not restrict attention to steady state.

Case 1: All sellers enter. That requires 0 =   1 −  and  = . There is a

unique solution

 =


 ( + )
(− ) and 1 =

+ 

 + 
,

and this is an equilibrium for parameters satisfying    and

 ≤ 1 () ≡ 

 +

+

µ
 +  − 

 +

¶


Case 2: All sellers produce for themselves. That requires 0 = 1 −  ≥  and

 = 0. There is again a unique solution

1 =
− 


and  =



 + 
(− 2+ 1)

and this is an equilibrium for parameters satisfying  ≥ 2 () ≡ +( +  − ) 

and   ( + ) .
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Case 3: Some sellers produce and hold inventory, and others enter the market.

That requires 0 =  = 1 −  and  ∈ (0 ). The unique solution is

1 =
− 


,  =

− ( + ) 


, and  =

 (− )

− ( + ) 
− 

and this is an equilibrium for parameters satisfying 1 ()    2 ().

Case 4: Sellers do not produce. That requires 0 = 0, 1 −   0,   0 and

 = 0. The unique solution is

1 =


 + 
and =

 (− )

 + 

and this is an equilibrium for parameters satisfying   ( + )  and   . This

completes all the cases, and implies uniqueness. ¥
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