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Abstract

We study dynamics in frictional markets with inventories, focusing on mod-
els with intermediated trade, where middlemen buy assets or goods from
sellers and sell them to buyers. Extending previous work, we include hetero-
geneous buyer valuations, and develop a characterization of equilibrium in
terms of reservation trading strategies (homogeneous valuations imply bang-
bang solutions with discontinuities that are awkward for the economics and
mathematics). In continuous or discrete time, equilibria exist where mar-
ket participation, trading strategies, liquidity, and other variables fluctuate
as self-fulfilling prophecies. This is driven by strategic considerations, not
increasing returns or related assumptions made in other models.
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Your inventory cycle is basically a three-step relationship between the
supplier who provides the product, the retailer that sells the product,
and the consumer who buys the product. Pierre (2019).

1 Introduction

This paper is a study in economic theory, but we think it is has substantial relevance
for the way one thinks about markets in the real world. The goal is to understand
dynamic equilibria in search-based models of inventories, with a focus on interme-
diated trade: middlemen buy assets or goods from sellers, then sell them to buyers.
A key extension over related work is to incorporate heterogeneous valuations and
develop a characterization of outcomes in terms of reservation trading strategies,
since homogeneous valuations imply bang-bang (corner) solutions that create dif-
ficulties for the economics and the mathematics. A main result is the existence
of multiple equilibria, including continuous- or discrete-time cycles, where invento-
ries, market participation, liquidity, prices, markups and other variables fluctuate
as self-fulfilling prophecies.

Our approach to middlemen and inventories builds on a literature going back
to Rubinstein and Wolinsky (1987). This research studies markets with frictions,
using search theory, and roles for middlemen arise from their comparative advan-
tage in certain attributes, including matching efficiency, information, bargaining
power, and storage cost or capacity.! While following in this tradition, past papers
mainly concentrate on steady states, or sometimes transitions to steady state. We
emphasize the possibility of endogenous fluctuations.

The objects being traded can be either assets or goods, the difference being that
inventories of assets yield positive returns, while inventories of goods yield negative
returns, i.e., storage costs. That distinction, which is convenient for keeping track
of different cases, is borrowed from Nosal et al. (2019), and in that model it makes a

big difference, while here it turns out to be less important. Still, interpreting agents

'Rather than review the literature, we refer to Wright and Wong (2015), which lists papers
where middlemen have advantages in search, information etc. Work since then includes Nosal et
al. (2019), Farboodi et al. (2018), Farboodi et al. (2023), Hugonnier et al. (2020) and Gong (2023).



as trading assets is interesting because it connects to the literature on search-based
models of OTC (over the counter) financial markets following Duffie et al. (2005).
However, although that framework typically has dealers intermediating between
asset sellers and buyers, they hold no inventories, and instead simply transfer assets
between agents using a frictionless interdealer market (with exceptions, like Weill
2007, but he does not address the issues studied here).

Multiplicity emerges from heterogenous valuations by buyers combined with
entry by sellers. When a middleman contacts a buyer, even if there are myopic gains
from trade, there is an option to hold out for a future buyer with higher valuation.
Agents use reservation strategies, but compared to standard formulations a new
strategic effect arises: If middlemen are more inclined to sell to buyers — i.e., have
a low reservation value — they more often need to replenish inventories. That
makes it easier for sellers to trade, increasing seller entry and making it easier
for middlemen to replenish inventories, which rationalizes a low reservation value.
However, if reservation values are high, there are few sales to buyers and less need
for middlemen to replenish inventories. That reduces seller entry, making it hard
to replenish inventories, which rationalizes a high reservation value.

The complementarity between reservation strategies and market participation
is novel and is a good reason to have heterogeneous valuations. In a similar model
with homogeneous valuations, Nosal et al. (2019) can get multiplicity only in mar-
kets for assets, i.e., only if inventories have positive returns. The reason is simple:
with homogeneity middlemen never decline trade with a buyer to hold out for one
with higher valuation, but might keep rather than sell inventory for its return if
that is positive. With heterogeneous valuations, we get multiplicity and interesting
dynamics for goods or assets, although it is easier with assets, as discussed below,
consistent with a long tradition of arguing that financial intermediaries are par-
ticularly prone to instability or volatility (see Gu et al.2023 for a discussion and
references to those making that claim).

Having said that, we like that the model can generate interesting results in

markets for goods, not just assets. One interpretation is that ours is a model of



retail trade, and a stylized fact is that the efficiency/productivity of these markets
differs dramatically across economies, as discussed by Lagakos (2016). Multiplicity
is consistent with the idea that retail markets in some economies may be stuck in
a bad equilibrium, where low efficiency/productivity is a self-fulfilling prophecy.”

Going beyond steady states, we are interested in the possibility of endogenous
fluctuations. To this end bifurcation theory is used to show there are limit cycles.
The use of these methods goes back to Benhabib and Nishimura (1979) in growth
theory. Applications in search include Diamond and Fudenberg (1989), who get
cycles in Diamond (1982a) if the matching technology displays increasing returns,
and Mortensen (1999), who gets cycles in a version of Pissarides (2000) if the pro-
duction technology displays increasing returns. One might question the empirical
relevance of increasing returns, but that aside, it seems fair to say that these results
are driven by mechanical technology specifications that play no role here.?

There are many papers with multiplicity and endogenous dynamics in mone-
tary economics (see the surveys by Lagos et al. 2017 and Rocheteau and Nosal 2017
for search-based models, and Azariadis 1993 for other approaches). The economic
forces behind those results are different, relying on the notion that what you accept
in exchange depends on what others accept. One manifestation of the difference is
that our results work through heterogenous valuations and endogenous participa-
tion, factors that are not needed for the results in monetary theory.* A feature of
monetary models is that utility is not (perfectly) transferable. Burdett and Wright
(1998) show nonmonetary search models with nontransferable utility can also have

multiplicity and dynamics while the same environment with transferable utility

2Given his expertise, we quote Lagakos, with permission, from correspondence: “That does
sound intriguing — I don’t remember seeing a paper that says something like that. I have the
impression that even countries of similar income levels often have pretty different retail structure
and efficiency. That smells like it could be multiple equilibria.”

30ther search models with dynamics based on increasing returns or related devices include
Howitt and McAfee (1988,1992), Boldrin et al. (1993), Kaplan and Menzio (2016) and Sniekers
(2018). Fershtman and Fishman (1992), Burdett and Coles (1998) and Albrecht et al. (2013) are
examples of search models with somewhat different dynamics.

“Kehoe et al. (1993) and Renero (1988) study cycles in the discrete-time model of Kiyotaki
and Wright (1989), although Oberfield and Trachter (2012) show the cycles vanish as period
length shrinks, as discussed in Section 4.3; this is one reason we use continuous time in much of
this paper. See, e.g., Rocheteau and Wright (2013) and references therein for related work.
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cannot, and a nice recent application of this to OTC markets is Martel (2023).
This is not relevant in our setup, where utility is transferable.’

Motivating general interest in inventories, many people think that they are an
important component of business cycles, in part because they are volatile and pro-
cyclical. This can be understood with a supply-side story: when productivity is
high, it is efficient to produce a lot and keep some as inventory to spread good times
into the future. This paper instead concerns a demand-side story: holding produc-
tivity constant, when inventories are high production slows because middlemen are
not buying. This could make inventories countercyclical if there were no shocks,
but of course there can be many shocks driving cycles. Hence, countercyclicality
here describes not the macro data, but what can happen as a self-fulfilling prophecy
about inventories, trading strategies and entry decisions.’

Section 2 presents a relatively simple specification, without entry, and shows
equilibrium is unique. Section 3 adds seller entry and shows how multiplicity and
cycles can emerge. Section 4 explores other topics: welfare; entry by middlemen
instead of sellers; discrete-time models; and a version where consumers instead of

middlemen hold inventories. Section 5 concludes. Proofs are in the Appendix.

2 The Basic Framework

A continuum of infinitely-lived, risk-neutral agents come in three types, labeled B,
S and M, for buyers, sellers and middlemen, with differences detailed below. Type

i can participate in a continuous-time, bilateral matching market if they pay entry

>Transferable utility means there are no payment frictions. One imlication is that, while in
what follows we often describe trade between middlemen and others as being decided by the
former, in fact the decision is joint: they trade as long as the total surplus is positive.

6See Blinder (1990) and references therein for early work advocating the importance of inven-
tories in macro; there is too much later work to review here, but see Khan and Thomas (2007) for
an example. To give some idea of what macroeconomists find interesting, consider quarterly U.S.
data, 1974-2007 (it is common to stop in 2007 to avoid the financial crisis, but the patterns are
similar in a longer sample, even if the magnitudes are somewhat different). Inventories over GDP
average 0.56. After taking logs and HP filtering, the sd (standard deviation) of inventories over
the sd of GDP is 0.86 and their correlation is 0.73, while the sd of sales over the sd of GDP is 0.19
and their correlation is 0.95. This seems consistent with a supply story — when productivity and
output are high, it is efficient to consume some and inventory the rest. While that is interesting,
ours is a micro model of a market, not designed to capture macro facts.



cost k;, but for now x; = 0 Vi so everyone participates. Indeed, they participate
forever, which is not crucial but simplifies some calculations compared to, e.g.,
Rubinstein and Wolinsky (1987) where M stays forever while B and S exit after
one trade, or Nosal et al. (2017) where everyone exits probabilistically after each
trade (see also Vanyos and Wang 2007 or Farboodi et al.2023). When B and S
meet, S can produce an indivisible object x, at 0 cost, that gives B match-specific
payoff 7, with CDF F'(7) on [z, 7]. Note that 7 can be utility if B consumes x, or
profit if B uses it as an asset for investment or input for production.

In spirit if not detail this is similar to much work following Duffie et al. (2005).
There all agents can store x and individual valuations change over time, determining
who wants to buy and sell. We are pursuing versions like that in a companion paper,
but here, for tractability, it is better to have dedicated sellers S, who are always
the originators of z, and dedicated buyers B, who are always the end users.

In any case, S can produce for M, who can store x in inventory, and may or
may not sell it to B when they meet. Hence, M can be interpreted as agents with
a storage technology — others cannot store x, for now, but see Section 4.4. There is
a flow payoff p for M with x in inventory, and we say that x is an asset when p > 0
(it has a return), while x is a good if p < 0 (it has a storage cost); this usage is not
critical, but helps keep track of different cases. Inventory held by M depreciates
by disappearing at rate § > 0. As in many papers in search theory, holdings of z
by M are constrained to the set {0, 1}, which is obviously special, but allows one
to make salient points in a succinct way.”

Let n; be the measure of ¢ = B, S, M in the market, which is exogenous for
now, and n the measure of M with x in inventory, which is endogenous. There is
a standard matching technology: you meet someone at Poisson rate «; and each

meeting is a random draw from the population. In particular, if N is the measure

"In addition to middlemen papers like Rubinstein and Wolinsky (1987), to pick just a few
examples, {0,1} restrictions are imposed in the original search-equilibrium model of Diamond
(1982a), many of the monetary models cited in fn.4, banking models like Cavalcanti and Wal-
lace (1999), OTC asset models like Duffie et al. (2005), labor models like Pissarides (2000) and
partnership models like Burdett and Coles (1997). We think this puts us in good company.



of all market participants, the arrival rate of B for both M and S is an,/N, so
M has no advantage over S in search. Given m > 0, when B and S meet they
always trade, since it does not affect their continuation values. Also, when S meets
M with x = 0 they trade unless p < 0 and |p| is big (more on this below). The
interesting question is, when M with x = 1 meets B, do they trade? As we will see,
the answer depends on fundamentals, including 7, and on beliefs.

If j gives z to ¢, the latter pays p;; determined by bargaining with transferable
utility. Thus, if ¥;; is the total surplus available when ¢ and j meet, they trade if
¥ > 0, and 4’s surplus is 0,;%;;, where 6,;; > 0 is ’s bargaining power against j,
with 0;; + 0;; = 1. Letting V;, and V,; be value functions for S and B, V,; the

value function for M with z € {0,1}, and A, = Vi, — V4, we have®
st,t =T, Ems,t - Ab and Ebm,t =T — At- (1)

Note the continuation values and threat points for .S and B cancel in the surpluses,
so V; and V, do not appear. From these follow what we call the direct price, the

wholesale price, and the retail price, given respectively by
DPost = 6)sbﬂ-? Pmsit = 6)smAlb and Pom,t = Hmbﬂ- + HbmAt~ (2)

When M with z = 1 meets B with valuation 7, they trade with probability

7 = 7 (m, R;), where R, is the reservation value:

0 ifm< R,
7(m, Ry) =< [0,1] ifm=R, (3)
1 lf ™ > Rt

Clearly, R; = A;. Hence, the expected flow payoft for B is

aNg ¢ Qg

N, Ops B + Tteme [T (m, Ay) (m— Ay)] + %,b (4)

7"Vb¢ =

where 7 is the discount rate and and prices have been eliminated using (2). The

first term on the RHS is the arrival rate of S times B’s share of the surplus; the

8 At this point we start subscripting variables by ¢, including n,, N and n,, even though they
are constant in this most basic version of the environment, so that the same expressions hold
when they are endogenous; we do not subscript n, by ¢ since it is fixed in all versions.
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second is the arrival rate of M with z = 1 times the probability they trade times
B’s share of the surplus; the third is the pure time change in value.

Similarly, for S,

an a(Mpme—n .
Vi = Wtb@stW + %esmAt + Vi (5)
and for M,
Vo = %QmsAt + V(),t (6)
Ny
anyg > .
r‘/l?t = Temb/ (77' — At) dF (7T) +p— 5At + ‘/i,t~ (7)
t A,

Subtracting (7)-(6) and simplifying with integration by parts, we get

Bom =, [ F o g A g ) B (9
Nt Ay Nt

The evolution of inventories held by M is

Mgt (nm7t - nt) o Oé'rLbTLtET (7T, At)
Nt Nt

ht:

— 0ny, 9)

where E7 (7, A) = Pr (7 > A) is the unconditional probability that A and B trade.
The first term on the RHS is the measure of M without = times the rate at which
they buy it from S; the second is the measure of M with = times the rate at which
they sell it to B; the third is depreciation.

Equilibrium is defined as a path for (A, n;) satisfying dynamical system (8)-(9),
plus the standard side condition that the paths must be nonnegative and bounded,
and the initial condition ny giving inventories at ¢ = 0. A steady state is a constant
(A, n) satisfying (8)-(9). Given an equilibrium (A4, n;), or a steady state (A, n),
all other variables follow, including payoffs, prices, trade volume, etc.

With no intermediaries, n,, = 0, equilibrium is obviously unique, with B and
S trading whenever they meet. With n,, > 0, first notice that the path of A; is
independent of n;. Then from (8)

dAt _any

Mg ¢
—tg, §>0,
N, +r+



implying A, must equal its steady state value V¢, since any other solution to (8)
diverges — a result that reappears in some, but not all, formulations below, and is

discussed more later. Given A, (9) implies

dny ansy BT (1, A)
ot ) 5
dn, N, + N, +0| <0,

so n; converges monotonically to its steady state. Equilibrium is unique. There are

no dynamics due to self-fulfilling expectations.

3 The Main Model

Now let S face a participation decision, which is natural, and nice because it lets
us compare economies with and without middlemen while keeping the environment
otherwise the same.” Then ns; and N; can vary with time, while n,, and n; are
constant. The entry condition rV; = ks implies Vsﬂf = 0. Combine the entry

condition with (5) to get
Niks = anpf B 4+ o (g, — ng) Ogm ;. (10)

This lets us eliminate N; from (8) and (9), resulting in a two-dimensional system

At f (nh At)
] = , 11
l Nt } l g(ntuAt) ( )
where
QaNpKs e
f (e &) anpd B + o (i, — ny) Osm O /At [ (m)] d

(M, + 1) K
anpl B + a (N — 1) s A
(T, + 1) Ks
anyf B + a (g — 1) Oam Ay (o = 1)
B anym Bt (7, Ay) Ky B
anpl B + a (N — 1) Osm A

glng, Ay) = a[l

5nt

9The environment is the same with and without M in the sense that it always has endogenous
market composition due to S entry. With M entry, we eliminate endogenous composition if we
eliminate M, but that case is still covered in Section 4.2; we tried entry by B, too, but it is less
interesting, unsurprisingly, since type B is fairly mechanical here.



Define the n locus and A locus as the curves in (n, A) space along which n =0

and A = 0, with their intersections constituting steady states. Their slopes are

given by
dA gsmA {nbgmb ./ZO {1 —F (77-)] dm + (nm + nb) gmsA}
dn .. (12)
dn [A—g Nk,D
dA ns + ,%SgsmA [Oé (TLm - ’TL) - 571] -+ 1y {1 - F (A)] —+ N% 13
dn a0 B0 [ (i, — 1) — On] +mpn f (A) (13)
where

D — % {nbamb /; (1= F ()] drr + (s +m3) emsa}

+1p0m [L — F (A)] Ja+ N (1 +6) /a? + ngbms/

As both slopes are positive, there are potentially multiple steady states. This
can be illustrated in the degenerate case where m = 7 with probability 1, even if
we are less interested in that than heterogenous valuations. In this the degenerate
case, there are three possible regimes: (i) A < 7, so M with z = 1 and B trade
with probability 7 = 1; (ii)) A > 7, so they trade with probability 7 = 0; and
(iii) A = 7, and they trade with probability 7 € (0, 1).

Consider first p > 0, which can be interpreted as = being an asset rather than

a good. We have the following result (all proofs are in the Appendix):

Proposition 1 Suppose m = 7 with probability 1 and p > 0. There exists p > 0
and p > p such that: (i) if p € [0, p) there is a unique steady state and it has A < 7;
(i1) if p € (p,00) there is a unique steady state and it has A > 7; (i) if p € (p, p)

there are three steady states, A <7, A>T, and A = 7.

Example 1: a =1, 6 = 0.008, r = 0.04, n, = 0.05, n,,, = 0.5, 0,,,, = 0.7, 04 =1,
Osm = 0.5, ks = 0.1, 7 = 1, and various p.

Fig. 1 illustrates the result for Example 1. As the left panel shows, for p = 0.1
there is one steady state; for p = 0.2 there are three; and for p = 0.3, there is one.

The right panel is for a discrete-time version of the same specification, as analyzed



in Section 4.3; it can be ignored for now, but it is perhaps interesting to see the

continuous and discrete formulation side by side.

0.36 0.42 0.48 0.4 n' 044 pt

Fig. la: Example 1. Fig. 1b: Discrete-time version.

Multiple steady states can be explained as discussed in the Introduction: If A is
low, M with x trades it to B, so the probability M has x is low, which encourages
S entry, making n, high and making it easy for M to get x, consistent with low A.
If A is high, M with x does not trade it to B, so the probability M has z is high,
which discourages S entry, making n, low, consistent with high A. When both
7 =1 and 7 = 0 are consistent with equilibrium, as usual, so is some 7 € (0, 1).

Market liquidity — the ease with which agents can buy and sell x — is high (low)
when A is low (high). Multiplicity means market liquidity is not pinned down by
fundamentals. Notice p > 0 in Proposition 1, which means steady state is unique
for p = 0. This is also true for p < 0, which says that goods markets have a unique

steady state when valuations are homogeneous:!’

Proposition 2 Suppose m = 7 with probability 1 and p < 0. Then there is a

unique steady state and it has A < 7.

10The system in the text is derived assuming M and S trade. That is fine if p > 0, or if p < 0
and |p| is not too big, since then steady state is consistent with A > 0, so M and S must trade.
However, if p < 0 and |p| is too big, M and S will not trade, and any M with « would dispose of
it; in this case, in the only steady state M does not trade. For now, if p < 0 we simply assume
|p| is not too big, and return to the issue in Section 4.3.
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While our specification is somewhat different, the above results are consistent
with Nosal et al. (2019), but things change when we depart from a degenerate
7. First, if 7 is degenerate, multiplicity cannot arise if p < 0 because M’s only
alternative to trading with B is to keep z, but this “buy and hold” strategy only
makes sense if p > 0. With nondegenerate 7 there is a different motive for M to
pass on trade with B: if the match-specific 7 is low, M may want to hold out for
a higher w. This is standard fare in search theory, and does not rely on p > 0,
although higher p helps in the same way that, say, higher unemployment benefits
help support higher reservation wages in labor markets. So multiplicity does not
require p > 0 but one can say that p > 0 might make it more likely.

There are other reasons to go beyond degenerate w. First, when there are
multiple steady states, as in Fig. 1, it is hard to characterize dynamics around the
middle one because the n locus is horizontal.!* Also, with disperse 7, M and B are
only indifferent to trade in the rare event 7 = A (i.e., most of their interactions are
strict best responses). Also, if A varies over time, intermediation activity varies,
but with degenerate m we get bang-bang situations (i.e., 7 is almost always 0 or 1),
while with disperse ™ we can get trade volume varying smoothly over time. All of
this is verified below, starting with the claim that multiplicity can arise with p < 0
once 7 is nondegenerate.

Example 2: o = 0.96, 6 = 0.001, » = 0.01, n, = 0.055, n,, = 0.4, 0,,, = 0.95,
O =1, 04, =0.1, kK, = 0.225, p = —0.001 and

yim/a ifo<nr<a
nt(y—y)(r—a)/(b—a) fa<m<b
F = . 14
(™) Yo+ (ys —y2) (m=b)/(c=b) ifb<nm<c (14)
ys+(1—y3)(m—c)/(d—¢c) ife<nm<d
witha=1,0=1.02, c=2.38,d=24, y; =0.01, yo = 0.5, and y3 = 0.55.
Fig. 2a shows the situation for Example 2, with p < 0 and a distribution of 7

that is disperse but concentrated around two values, as is useful for making a point

1 As Nosal et al. (2019) say: “Whether this [equilibrium] converges to steady state, or to a small
cycle around it, is hard to say from the numerical output, and checking local stability directly is
hindered by the [relevant objects| being nondifferentiable.”
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even if the examples below use a simpler (uniform) distribution of 7. The point is
that there are three steady states, (0.156,0.966), (0.177,1.012) and (0.198,1.071).
Hence, multiplicity obtains with p < 0, with intuition similar to that laid out above:
if A is high M only trades with B when 7 is high, so the probability M has x is
high, which reduces entry by S and makes it hard to M to replenish inventory,
justifying a high A; while if A is low, and so on.

Fig. 2a: Example 2, Steady States. Fig. 2b: Example 2, Phase Plane.

As mentioned, higher A means the market is less liquid. To consider related

variables, the (average) markup is the ratio of the retail and wholesale prices,
foo mdF (1) o)
LS [ (O + Oy ) dF ()

g =

The spread is the difference between these prices,

= fzo (meﬂ' + HbmA) dF (71') VRN
1—-F(A)
Trade volume is
- Ny N anyn dF (1) + ang (N, —n)

N N i N

These are relevant because the markup, spread or volume are used as measures
of frictions in decentralized markets in both theory (e.g., Weill 2008; Lagos and
Rocheteau 2009) and empirical work (e.g., Brennan et al. 1998).

12



Across steady states in Fig. 2a, the markup, spread and volume are (o, y, v) =
(16.941, 1.540,0.0372), (18.835,1.805,0.030) and (21.138,2.157,0.025). At higher
A, both retail and wholesale prices are higher, but on net the markup and spread
rise, while volume falls, as might be expected in a less liquid market. Later we
check how these variables behave over time, not just across steady state.

To begin the dynamic analysis, consider Fig.2b, which zooms in around the
three steady states. It is easy to check that the lower and upper steady states
are saddle points, and their stable (unstable) manifolds are shown in blue (pink).
For these parameter values the middle steady state is a sink, with branches of the
unstable manifolds of the other steady states spiraling in towards it. There are
multiple dynamic equilibria: starting from any ng in some range, equilibrium can
converge to the upper or lower steady state, or it can spiral into the middle steady
state, and what happens depends on initial beliefs as given by A,.

Example 3 (saddle loop bifurcation): 7 ~ U [0,2], « = 1, § = 0.001, n, = 0.05,
N = 0.5, O, = 0.75, 0, = 1, O, = 0.05, ks = 0.1, p = 0.108 and various 7.

Fig. 3a shows the situation for Example 3, where again there are three steady
states, but now the middle one is a source, not a sink. Again, starting from any
ng in some range, there are many equilibria depending on Ay, but now we cannot
spiral into the middle steady state. This suggests the possibility of cycles which we
now explore using bifurcation theory.'?

The first case involves a saddle loop (also called a homoclinic) bifurcation. In
Fig. 3a, with » = 0.018, the blue stable manifold going to the lower steady state
is inside the pink unstable manifold. In Fig.3b, with » = 0.013, the blue stable
manifold is outside the pink unstable manifold. By continuity, for some r* &

(0.013,0.018) there exists a homoclinic orbit — i.e., the unstable and stable manifold

12References on the dynamical system theory used here include Guckenheimer and Holmes
(1983) and Kuznetsov (2004), while Azariadis (1993) is a standard source for economic applica-
tions. We employ the Hopf bifurcation, as used to get continuous-time cycles in a search model
by, e.g., Diamond and Fudenberg (1989), and the saddle loop bifurcation, used by, e.g., Coles and
Wright (1998) or Mortensen (1999). Sniekers (2018) uses the Bogdanov-Takens bifurcation, not
previously used in search theory, but used in a macro model by Benhabib et al. (2001). While
Sniekers (2018) approach may have some advantages, we find it less tracatbale, and in any case
we get what we are after with our approach.
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coincide — as shown in Fig. 3c. As the middle steady state inside the homoclinic
orbit is a source for these parameters, and other obits inside it cannot get out,
the inescapable conclusion is this: starting inside the homoclinic orbit, since the
system cannot escape and cannot go to the middle steady state, it must go to a
cycle. The green curve in Figure 3d, drawn for r = 0.016, is a trajectory starting
near the middle steady state, and the pink curve is the unstable manifold of the

lower steady state, both of which approach a limit cycle.

0.35 0.4 0.45 0.35 0.4 0.45

Fig. 3a: Example 3, r = 0.018. Fig. 3b: Example 3, r = 0.013

A

0.35 0.4 0.45

Fig. 3c: Example 3, homoclinic orbit Fig. 3d: Example 3, r = 0.016.

The mechanics of saddle loop bifurcations are clear from the graphs, but more
formally the Andronov-Leontovich theorem says: Consider a system x = f(x,7)

with x € R? and a parameter 7 € R! where f is smooth. Suppose at r = r

there is a steady state x* that is a saddle point that has a homoclinic orbit with
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another steady state inside it. Under mild regularity conditions (Kuznetsov 2004,
Section 6.2), Vr in a nondegenerate neighborhood of 7* there exists a neighborhood
of the homoclinic orbit and z* in which a unique limit cycle bifurcates from the
homoclinic orbit (i.e., the cycle emerges as r crosses r*). The theorem also gives
conditions under which cycles are stable or unstable, but the result to emphasize
is that they exist for all r in a neighborhood of r* — i.e., for a range of parameter
with positive measure — even if the homoclinic orbit exists only at r*.

Time series from this cycle are shown in Fig. 3e. While the examples are not
meant to be calibrations, only to show mathematical possibilities, we mention that
with r = 0.016 a period corresponds to roughly 1 quarter, giving the cycle a not-
unrealistic duration of about 7 years. Having said that, there is as usual a tradeoff
in the sense that higher frequency cycles generally have lower amplitude. In any
case, notice entry and volume lead A, while inventories and output lag, A. Also,

the markup (spread) is negatively (positively) correlated with A.

output (y)

inventory (n)
A
®
sellers (n_)

1.65 0.015 1.65 ——————————0.005 1.65 = —0.05
80 0 80 0 80

trade-in price
A
»
trade-out price
spread (1)

Fig. 3e: Example 3, r = 0.016, Time Series.

Example 4 (Hopf bifurcation, subcritical): = ~ U [0,3], « = 1, § = 0.0001,
r=0.0825, ny =ny =1, Oy = 0y = Oy = 0.5, kg = 0.4 and p = 0.33.
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Fig. 4a: Example 4, r = 0.0825. Fig. 4b: Example 4, r = 0.0875.

An alternative approach uses the Hopf bifurcation. Fig.4 is for Example 4,
again with three steady states, and blue (pink) curves showing the stable (unstable)
manifolds. The middle steady state can be a sink or a source. As r increases there
is a Hopf bifurcation at r* = 0.0851 where the trace of the system is 0: for r < r*
the middle steady state is a sink; for r > r* it is a source. With r = 0.0825 in
Fig. 4a, the stable manifold spirals away from an unstable cycle and goes to the
upper steady state, and shown in green is a trajectory spiraling away from the cycle
toward the sink. As r increases above r* the sink becomes a source and the cycle
disappears, as shown in Fig.4b for » = 0.0875. In this example the bifurcation is
subcritical, meaning a small increase in r around r* can cause the system to deviate
away from the middle steady state.

Fig. 4c plots time series with » = 0.0825. Volume, output and entry by S are
negatively correlated with A, while inventories are positively correlated with A.
Notice that over the cycle M and B trade with positive probability when A < 3,
where ™ = 3 is the upper bound of the support, and do not trade at all when A > 3.
This can be described as recurrent intermediation freezes and thaws.'® The market

does not shut down during a freeze, since B still trade with S, but B cannot trade

13See Gu et al. (2022) and references therein for a discussion of freezes in asset and credit
markets, as well as attempts to model them formally that are very different from our approach —
e.g., using stochastic (sunspot) equilibrium in discrete time.
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with M, who are rationally holding out for better times. Since M does not trade

with B during a freeze, Fig. 4c only shows the markup and spread during thaws.
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Fig. 4c: Example 4 Time Series.

Example 5 (Hopf bifurcation, supercritical): 7 ~ U[0,2], « =1, § = 107°,
np=2,Np=10,,=0,04=1,04,=02, ks, =0.6 and p = 0.3.

0.5 0.7 0.9 0.5 0.7 0.9

Fig 5a: Example 5, » = 0.055. Fig. 5b: Example 5, r = 0.0562.

Figh is for Example 5, with a bifurcation at r* = 0.0557. In Figba, with
r = 0.055, the middle steady state is a sink and the unstable manifold of the lower

steady state converges to it. As r rises past 7* the sink becomes a source with
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a stable limit cycle around it. In Fig.5b, with » = 0.0562, the green curve is a
trajectory spiraling away from the source, converging to a cycle. The unstable
manifolds also converge to a cycle. Fig. 5c¢ plots time series, like Fig. 4c, with a few
differences — e.g., the variability of the markup is smaller, and while there are again
freezes, they are shorter, and the series are smoother. Also, similar to the saddle
loop, with a Hopf bifurcation cycles exist for a set of parameters with positive
measure, not just at the bifurcation point r* (Kutznesov 2004, Theorem 3.4).

In terms of economics, these examples show it is not hard to find parametric
specifications with cyclic equilibria due to self-fulfilling expectations about trading
and entry decisions. We do not claim that actual data are best explained by such
cycles in isolation — presumably observations from the real world are driven at least
in part by fundamentals, including shocks to technology, policy, etc. We do suggest
this: when simple models deliver equilibria with endogenous variables fluctuating
purely due to beliefs, it lends credence to the idea that markets in real economies
might be susceptible to similar phenomena. Therefore we think it is useful to
analyze models with natural ingredients, like inventories and entry decisions, to see

if and when they display such phenomena.

2.05 i 2.05 0.5

o
~
&

(n)

inventory
sellers (ns)
output (y)

\ {04

trade-in price
trade-out price
spread (y)

) 50 0 50

Fig. 5c: Example 5, r = 0.0562, Time Series.
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4 QOther Issues
4.1 Welfare

In the above specification, with entry by 5, steady state welfare is:

W = rimnV,+ (nn, —n) Vi +nl)

ansnp anny [ ang (N, —n)
_ My g —A)dF e =
- Ons B + N /. (7 YdF (m) + N

Thus, W includes the surplus when B trades with S, when B trades with M and
when M trades with S, plus the flow payoff from dividends minus the loss due to
depreciation.

Different steady states are distinguished by their A, with higher A reducing
entry. The first term falls with A because the number of meetings between B and
S falls. The second term is ambiguous because while the surplus in these meeting
falls the number of meetings can go either way. The third term is also ambiguous
because the number of meetings can go either way. The last term is ambiguous
because the total dividend and the total depreciated value both increase in A. In
most of our examples, W decreases with A, but in Example 5 with » = 0.0562, W
increases in A.

Whether welfare is lower on the cycle depends on parameter values as well as
where the cycle starts. Consider a case with three steady states, let W, W), and
Wy be welfare in the lower, middle and upper ones, and let W be welfare in a
cycle. In Example 3, if a cycle starts at the highest A then W, > Wy, > W > Wy,
while if it starts at the lowest A then Wy > W > Wy, > Wy, In Example 5, if a
cycle starts at the highest A then Wy > We > W)y, > Wy, while if it starts at the
lowest A then Wy > Wy, > W > Wp. The conclusion is that welfare comparisons
are generally ambiguous, as is no surprise, based on previous work in the area.

In terms of efficiency of intermediation, in general, W can be higher or lower with
middlemen than without middlemen, as in, e.g., Nosal et al. (2015,2019), Masters
(2007,2008), Farboodi et al. (2019) and Gong (2023). The reason is that while M

perform a real service, their activity depends on bargaining power, and they like to

19



buy low and sell high; hence, they may operate even if it is not socially efficient.!*

4.2 Entry by Middlemen

With endogenous participation by M instead of S, the dynamical system is de-
scribed by (4)-(9) with constant ng, time-varying n,,; and entry condition 7V, =

(ns/Ny) a5y = Kp,. Combining this condition with (8) we get

A Rmembnb *
A= A /A 1 —F(m)]dr + Ky —p+(r+9)A.

This is a first-order differential equation, with dA /dA > 0. Hence, the results are
similar to the version with no entry in Section 2: the unique equilibrium has A

constant at its steady state level. Also,

Km (Mo +ns +n)  Kmmpn [1 — F (A)]
emsA nSQmSA

n=ang — — ony,

which implies dn/dn < 0, so n; converges to steady state.

While n,; adjusts during the transition A; does not change, the way payoffs do
not vary in Pissarides (2000) even while unemployment adjusts to steady state.!®
We can also relate the results to Rocheteau and Wright (2005), where buyers choose
money balances before entering the market. If seller entry is endogenous, there can
be multiple equilibria, since there is a complementarity between buyer and seller
strategies; but if buyer rather than seller entry is endogenous, there cannot be mul-
tiple equilibria since, heuristically, the same agents are making the money holding
and entry decisions. A similar intuition applies here, although the mechanism is
different, since it is the complementary between the trading strategy of M and

entry decision of S that matters. Still, the idea is that there is no multiplicity with

1We do not pursue welfare further because it has been studied elswhere, and because the
results are similarly ambiguous. Still, to illustrate the possibilities, let Wy be welfare with n,, = 0,
including only the surplus from trade between B and S, and consider a case with three steady
states. Letting W, Wy, and Wy be as in the text, we have: In Example 1, W, > Wy, > Wy >
Wy. In Example 4 with r = 0.0825, Wi > Wy > Wy > Wy. There are also examples with
Wi, > Wy > Wy > Wy. In Example 5 with » = 0.0562, Wy > Wy, > Wi, > Wy, which shows
that, when p is high, more inventories and a less liquid market can entail higher welfare.

15While this is also true in Section 2, the economics is perhaps more clear here because entry
by M is similar to entry (vacancy posting) by firms in Pissarides (2000).
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entry by M since the same agents are making the trading and entry decisions (more

on this below).

4.3 Discrete Time

Now consider a discrete-time model, with o the meeting probability, ¢ the depreci-

ation probability and 3 € (0,1) the discount factor. The surpluses are
Ebs,t =T, Ems,zt = (1 - 5) ﬁAt+17 me,t =T — (1 - 5) 5At+1a

where again A, = Vi, — Voo Now R, = (1 —9)BA.; is the reservation value
satisfying 5+ = 0. Prices are as in (2) except R; replaces A;.

Letting 7 (7, R;) be as in (3), the discrete-time value functions are

VE?J — Oén&t QbsEﬂ' + %T (7T, Rt) Qbm (7T — Rt) + /8‘/[)7t+1 (15)
N, N,
an a(np,e—n
Vet = TtbestﬂT + %tt)estt + BV 41 (16)
ang
Vor = T’tgmth + BVo,i41 (17)
t
an 0
Vig = p+ Tbgmb/ (m = Ry)dF (m) + (1 = 6)Vi41 + 0BVos41. (18)
t R,

Subtracting (17) from (18) and simplifying, we get a difference equation analogous

to the differential equation (8),

Rea= (=05 {p+ B 2 [T p(mlar - 2s2ep . (o
N, Ju N,

Similarly, we get a law of motion analogous to (9),

e = (1 — 8) ny {1 - %ET (W,R)] ta—al

Nomt — Tt ) VMg ¢
N, '

(20)

t

With no entry, one can check dR;/dR;_; > 1. Hence (19) has a unique equi-
librium, which is the steady state R. Also, dnyy1/dn; € (0,1), so ny converges to
the steady state n. Now consider entry by S with a per-period cost, which re-
duces to exactly (10) in the benchmark model. Given initial ng, equilibrium is a

nonnegative, bounded path for (n;, R;) satisfying (19)-(20), written compactly as

=[]
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Now the n locus satisfying n = ¢ (n, R) and the R locus satisfying R = f (n, R)
both slope up in (n, R) space indicating the possibility of multiplicity.
Example 6: The same as Example 1 plus p = 0.2.

There are three steady states (0.9007,0.4213), (1,0.4421) and (1.4826,0.4777),
similar to the continuous time specification. However, the discrete time dynamics
are rather different. Let us focus on a two-cycle, oscillating between a liquid regime

with low R and an illiquid regime with high R, denoted (R®,n%) and (n', RT).

(8] = [ e [ 2] =[] e

A solution is (RE,n*) = (0.9800,0.4511) and (R?,nf") = (1.0065,0.4297), shown

These solve

in Fig. 1b. Fig.6 shows the times series. In the liquid regime R is low, making M
more likely to trade with B, and 7 is high because M and B traded less last period,
while n; is low because low R and high n discourage entry by S. The illiquid regime

is just the opposite.'®
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Fig. 6b: Example 6, Time Series.

Next, consider entry by M. Then (15)-(20) are the same, but n; is fixed while

16Prices are also shown in Fig.6b. The direct price is constant over time, depending only on
fundamentals, but the wholesale and retail prices move with R. The spread can go either way, but
here it moves against R. This is all broadly consistent with the data discussed in Comerton-Forde
et al. (2010), and other stylized facts like inventories being more volatile than output. While
this is, again, obviously not a calibration, the finding that it is qualitatively consistent with
observations may lend further credence to the story.
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Nt is endogenous. Now (16) yields N, in terms of R;,
Em Ny = ang0,,s Ry. (22)

From (22), N; depends only on R;, while with entry by S it depends on R; and n;.
Substituting (22) into (19), after some algebra we get R;—1 = G (R;), where

G(R)Eﬁ(l—é){p—kR—i—%/}j[l—F(w)]dw—ﬁm}. (23)

Now R;_ 1 depends only on R;, while with entry by S it depends on R; and n;.

The univariate system R;_; = G (R;) determines the path for Ry, from which
we get Ny, ny, etc. Steady state solves R = G (R) as long as it implies n,,,n > 0,
both of which hold iff R > R = (ns + np) km/ansl,,s (we also need n < n,, but
that never binds). A solution to R = G (R) > R is a steady state with M active.
One can check G (0) = 0o, G' (R) < 1 and G" (R) > 0. Also, VR > 7 G is linear
with slope (1 — ). This is shown in Fig.7a, from which it is clear that there
exists a unique fixed point R. We can have R > 7, on the linear part of G (R), or
R < 7, on the nonlinear part. If G'(R) < —1 then standard methods imply there
are cycles. There is a threshold p, such that G'(R) < —1 iff p < p, (we do not
know if p; > 0 or p; < 0 in general, but always found p; < 0 in examples). We
now show that G(R) < —1 and R < R are possible.

Example 7: © ~ [0,0.7], « = 1, § = 0.01, § = 0.99, n = ns = 1, O = 1,
Oms = 0.1, K, = 0.001, and various p.

Fig. 7a depicts G (R) in Example 7. As p decreases, the slope at steady state
falls. One can check G'(R) < —1 and R < R when p = —0.1. Hence there is a
2-cycle and possibly cycles of higher order. The right panel of Fig.7b plots the
second and third iterates, G? (R) and G* (R). A fixed point of G* (G®) other than
a steady state is a 2-cycle (3-cycle). As shown, there exist a pair of 3-cycles. The
existence of 3-cycles implies the existence of k-cycles Vk plus chaotic dynamics, by

the Sarkovskii and Li-Yorke theorems.
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Fig.7a: Example 7, Different p. Fig.7b: Example 7, 2 and 3 Cycles, p = —0.1.

Therefore, this discrete-time model has many dynamic equilibria, and is actu-
ally easy to analyze, at least with entry by M, which implies a univariate system.
Moreover, multiplicity and dynamics emerge with entry by M, counter to our in-
tuition about having entry by one type and a different decision by another type.

However, these equilibria vanish as the period length shrinks:

Proposition 3 In the discrete-time model with entry by M, where h denotes the

length of a period, there exists h > 0 such that for all h € (0,h) no cycles exist.

Oberfield and Trachter (2012), Rocheteau and Choi (2021) and Rocheteau and
Wang (2023) in different models show cycles vanish as the discrete period length
shrinks, motivating us to check which results are robust and which are not. While
discrete time with entry by M is tractable and delivers interesting results, one
might worry this is an artifact of the period length. Discrete time with entry by S
is less tractable, but more robust: interesting dynamic equilibria still exist when the
period length shrinks, as Section 3 shows — i.e., working directly with continuous

time we established the existence of cyclic equilibria.

4.4 Inventories Without Middleman

Middleman are not necessary for our results; what actually matters is that there are

both entry and inventory decisions. The middlemen framework is a very natural
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way to capture this, with entry decisions by S and inventory/trading decisions by
M. Still, an environment can be designed with no type M, so S and B must trade
directly, but now B has the option to consume x for payoff 7 or store it for return p,
which can play the role of M’s option to trade x or store it in the main model. One
can interpret storage by B as inventory, or savings, as opposed to consumption.
This inventory/savings option is only viable when p > 0, which is a reason one
might prefer the specification with M, where interesting results can occur for p < 0
or p > 0. In any event, to be clear, the purpose of this extension is to show it is
possible to get similar results without M, even if the model with M is better on
some dimensions.

As usual B’s payoff is match specific, 7 ~ F (), and B and S trade as long
as m > 0. If B chooses not to consume z, it is inventoried for flow return p and
depreciates at rate 6. Assume for simplicity that if B decides to store x the decision
is irreversible — it is not possible to later consume it and go back on the market, so
B is off the market until x depreciates. This restriction does not bind in, but could
bind out of, steady state. While it is not especially natural, it lets us make the
point relatively easily. Note that no such restriction is needed in the model with
M, which may be another reason to prefer that version.

Normalize the measure of B to 1, and let S enter the market by paying rs.
Let V., V5 and V; be the value functions of S, B without inventory and B with
inventory. When trading with S, if B inventories x the surplus is A = V; — 1}, and
if B consumes x the surplus is 7. Then B consumes z if m exceeds the reservation

valueR = A. If 0 is B’s bargaining power, then

—_ R ﬁ .
v, = “U=n) gy U AdF(w)+/ sz(w)]H/;
].+77/S 0 R
Vp = =g /RAdF( )+/ﬂ dF (7)| + Vi
TV = 1+ns ; ™ Rﬂ' s 0
Vi = p—0A+V

This leads to

A=(r+a)a—p+ 0{A+/u[1—F(7r)]d7r},

s A
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after integration by parts. The law of motion for inventories is

(1 —n)ng

, a
n=—on+ T F(A)

and the entry condition by S implies

M(l_e){A+/u[1—F(7r)]d7r}:/i.

1+ns A

Consider first a degenerate distribution of 7. That leads to

A = (7‘+6)A—p—|—1in289[y7r—|—(1—7)A]
no= —5n+7a<i;2ns(1—7)
I e (EICERNIERI

where + denotes B’s probability of consuming z. In terms of steady state, there
are three regimes with n; > 0 so the market does not shut down, v =1, v =0
and v € (0,1), plus a regime with ny = 0. In the Appendix we construct the set
of parameters that make v a best response to itself, and check whether n, > 0 or
ns =0, as well as n € [0, 1].

Example 8: o =0.1, 6 =0.01, n, =1, 0 = 0.73, ks = 0.01 different 7 and p.

The results are shown in Fig. 8a, partitioning parameter space into 4 regions
that support the different regimes. The pattern is general, and its properties are
derived as Claim 1 in the Appendix, while the picture is drawn for the specification
in Example 8. In the gray area n, = 0, so the market shuts down. Otherwise,
ns > 0 and: in the blue region v = 1 since 7 is high relative to p; in the brown
region 7 = 0 since 7 is low relative to p; in the green region there are three steady
states, ¥ = 0, v = 1 and v € (0,1). Hence multiple steady states can exist, as in
the main model, with M, with a similar intuition: if v is high B is often without
x, making it easier for S to trade, making ng big and B more inclined to consume

x; but if 7 is low, and so on.'”

17Tt is tempting so suggest that this has a Keynesian flavor, with + denoting the marginal
propensity to consume. It does have the feature that more consumption (higher aggregate de-
mand) stimulates more production (higher aggregate supply) as a self-fulfilling prophecy.
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0 Po

Fig. 8a: Regions/regimes without M. Fig. 8b: Regions/regimes with M.

If Fig.8a is useful, Fig.8b provides a similar picture for the model with M,
drawn for Example 1 in Section 3. However, the interpretation is: here S and B
always trade; S and M do not trade the grey area and trade in other regions;
and those other regions differ in the probability 7 that M trades with B. We did
not draw this graph earlier because deriving the regions with three types is more
cumbersome — Fig.8b is done numerically — and because these pictures are only
relevant for degenerate 7, while the preferred specification has disperse 7. Still, the
figures are remarkably similar, and Fig. 8b nicely tightens a loose end in Section 3,
where it was simply assumed that p is above some lower bound to guarantee M
and S trade; now the boundary of grey area tells us just how low p can go before
S and stop M trading. More generally, these pictures indicate that steady state
exists for all parameters, although for some parameters it is possible that certain
agents stop trading.'®
Example 9: 7 is as in (14) with a = 0.3, b = 0.31, ¢ = 0.48, d = 0.5, y; = 0.01,
Yo =049, y3 = 0.5, « = 0.46, 6 = 0.046, n, = 1, # = 0.75, Kk, = 0.01 and p = 0.1.

18Tn fact two things can go wrong when trying to construct an equilibrium where S and M
trade: we can violate A > 0 or n > 0. In Fig.8b, what binds is n > 0 when we hit the grey area
as we lower p for small 7, since we hit it before we reach p = 0 and p > 0 means A > 0. For
higher m what binds is A > 0 when we hit the grey area as we lower p.
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Fig. 9a: Example 9, r = 0.015. Fig. 9b: Example 9, r = 0.020.

Going beyond steady state, the model without M also has cyclic equilibria. As
r varies in Example 9 there is a Hopf bifurcation at r* = 0.0174. Fig.9a shows
r = 0.015, where there are four steady states, and the lowest is a sink, and the
unstable manifold of the next lowest steady state converges to the lowest one. As
r increases past r* the sink becomes a source, with a stable limit cycle around it.
Fig. 9b shows the case with » = 0.020, with the green curve showing a trajectory
spiraling away from the source and converging to a cycle. The unstable manifold
also converges to a cycle. Since cycles emerge when r increases, r*is supercritical.

Finally, we check on the general intuition offered above, that multiplicity and
cycles emerge when agents on one side make a inventory or savings decision while
those on the other side make an entry decision. The Appendix considers a version
of this model, without M, where B makes both an entry decision and inventory
decision and proves as Claim 2 that equilibrium is unique. The Appendix also
considers a version, without M, where S makes both an entry decision and inventory
decision and similarly proves as Claim 3 that equilibrium is unique. This is all

consistent with our general intuition.

5 Conclusion

This paper studied dynamic models of inventories, focusing on intermediated trade,

and allowing heterogeneous buyer valuations. We showed there are multiple steady
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states, and endogenous cycles, where entry, trading strategies, liquidity, prices and
other endogenous variables fluctuate. These fluctuations are driven by strate-
gic considerations, not increasing returns, as in some other models, or the self-
referential nature of acceptability, as in monetary economics. They are possible for
inventories with a positive return or a storage cost — i.e., for asset or goods markets.
For asset markets, this is consistent with the venerable view that financial interme-
diaries are prone to instability or volatility, while for goods markets, it is consistent
with the fact that retail trade differs dramatically across economies, as discussed
in the Introduction. We analyzed discrete- and continuous-time specifications. In
some cases (entry by middlemen) discrete time was tractable and gave interesting
results, but they are not robust to period length; in other cases (entry by sellers),
cyclic equilibria are possible in discrete and continuous time.

As mentioned above, the relevance of the findings is this: while it may be hard to
account for data based purely on self-fulfilling prophecies, when simple and natural
models display such outcomes, it may make one more inclined to think that actual
economies can, too. This is consistent with Diamond’s (1982b) view, but to get the
desired results he needed increasing returns, which he called an externality. As he
said, “this externality involves positive feedback: increased production for inventory
makes trade easier; easier trade makes production for inventory more profitable and
therefore justifies its increase. This positive feedback... implies the possibility of
multiple equilibria.” His models do not capture inventory behavior the way we do
— there are no middlemen — but, interpreted broadly, the spirit is similar.

One might say that when strategic considerations that arise naturally with in-
termediation are introduced, we can dispense with increasing returns and still get
multiplicity and complicated dynamics. To put this in context, Diamond (1984)
got money into his framework with a CIA (cash-in-advance) restriction, and again
increasing returns led to multiplicity. Subsequent developments showed that mod-
eling the microfoundations in more detail means the CIA constraint is not needed to
get valued fiat currency, and that further implies increasing returns are not needed

to get natural multiplicities and dynamics in monetary economics, as emphasized
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by, e.g., Kiyotaki and Wright (1993) or Johri (1999). What we think is a general
conclusion is that markets with frictions are prone to volatility or instability, in the
sense that there can be multiple steady states and cyclic dynamic equilibria arising
as self-fulfilling prophecies. This is well know in monetary models. Our results
show that real models with inventories have similar properties.

In other words, once the exchange process is modeled in more detail, and ex-
change is not as simple as it is in Diamond’s early work, where everyone trade
with everybody, there is a role for institutions that facilitate this process. Two
such institutions are money and middlemen. Once they are modeled explicitly, one
can dispense with mechanical assumptions like increasing returns and get similarly

interesting results.
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Appendix
Proof of Proposition 1: First notice that, with 7 = 7, (8) and (9) reduce to

(T+5+a€ms)A_p_anbﬁmbT(W—A);LVa(nannm)é’msA ~ 0 (24

on + Om]:;bT —a(nm —n) (1 _ +nm) = 0 (25

N

where

N anylgm + o (ny, —n) GSmA'

Ks

In the region where A > 7, where 7 = 0, combine (24) and (25) to eliminate N,

(r + 8+ st ) A =p. (26)

N — N
This implies

0N OmsOnmA

- = 5 <0
on (N — 1) (1 +0) + (N — 1) Ops0n

Thus we transform system (24)-(25) to (25)-(26). As (26) is downward sloping and
(25) upward sloping, there is at most one steady state with A > 7. Also, from
(26), steady state exists in this region only if p > 0.

In the region where A < 7, where 7 = 1, combine (24) and (25) to get

anmb (7_1' — A) + (nb + nm) GmsA
N (N + N, — M)

(7‘—|—6+0¢9m5)A:p+ [Oz(nm—n)—én].

This implies

0A MO mp (T — A) + (np + 1) s A d (ny + ny) + amy,
— = — 5 —— 5 < 0. (27)
on r+6+ ms"[a"”‘s("’"*(”b)fomb"g[O‘("’" W0 (Mg A oy — )

N (Np+1m—n

Again, since (27) is downward and (25) upward sloping, there is at most one steady
state with A < 7. Similarly, when A = 7 and 7 € (0,1), the n locus is flat and A
locus upward sloping. Hence, there again is at most one steady state.

For existence, it is easily verified that A and n loci are upward sloping and the
A locus is flatter than the n locus in regions where A # 7. Also, the A locus shifts

up when p increases. For p = —0,,,k5/04, the A locus goes through the origin. For
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p > —Owks/Og, the A locus has a positive intercept. At n = n,,, A is positive

and finite on the A locus. The n locus goes through (n,0), where

n=an,|1- nbjLnT/i /10 + ’i_ +all-— nbjLnT/i ,
om0 T O onpl o

strictly first increases, then becomes flat and goes to 0o as n goes to an,,/ (o + 0) <

nm. Hence the loci have at least one intersection. In particular, if there is a steady
state at A = 7, there are two more steady states, one with A < 7 and one with
A > 7. As p shifts the A locus, there exist p, p > 0 with the stated properties. B
Proof of Proposition 2. Suppose M buys = from S and does not sell it to B.
If p < 0 this “buy and hold” strategy has a negative payoftf which is dominated by
not buying x. W

Proof of Proposition 3. Let the length of a period be h. Then 3, «a, k,,, p and

0 are functions of h. As usual, let:

oy P P gy ) o 200 iy 20

The equilibrium condition can be rewritten R, , = G (R, h), where

G (Rih) =B (k) [1 - 6 (1) {p(h)+3+%”bgmb/w 1 —F(w)]dw—mm(h)}.
sUms R (28

As h — 0, this converges to the continuous-time model.

First we show steady state is unique. From (28) we get
g—g — B 16 () {1+% [—1+F(R)—}%/Roo[1—F(7r)]d7r]}.
(29)

As the term in square brackets is negative, 0G/OR < 5 (h)[1 =6 (h)] < 1 VR, so
G crosses the 45° line at most once: if it exists steady state is unique. With R (h)
denoting steady state as a function of period length, it solves R = G (R, h), which

we rearrange as

RY1L— A ()~ 5 ()3 (1)
= 5001 =3 0] {p(0) = o (0] R+ Z2L0 [0 p (o) ar).
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For any h > 0, the LHS is 0 at R = 0 and the RHS is strictly positive at
R (h) = 0. Hence R (h) > 0 Vh > 0. Dividing by h we get
1—B(h)—B(h)é(h)

R2

h
p(h) — K (h) Km (h) 1p0mp /°°
= 1-— 1—-F .
a1 - o) { LSy Bl [T p ) ar
As h — 0, the LHS approaches R?(r + ) and the RHS approaches (p — k,,,) R +
“zja”jzn" f R 11— )] drw. At R =0, the LHS is 0 and the RHS is strictly positive.

Hence, R (0) # 0. Fmally, evaluate (29) at & = 0 and R (0) to get lim,_ 0G/ORy =
1. By the continuity of G, there exists a cutoff i > 0 such that dG/OR (h) > —1
for h > h, implying a 2-cycle, and dG/OR (h) < —1 otherwise. As is standard, if a
2-cycle does not exist, no cycles of any order exists. ll

Proof of Claim 1: As discussed in the text there are 4 cases. We consider each
in turn.

Case 1: v =1 and ns; > 0. For 7 = 1 we need m > A, which easily reduces to

p+r0/(1-10)
> 30
N (30)
Given v = 1, n = 0. Finally, ny > 0 reduces
K
>— = 1
Sai—g (31)
Case 2: v =0 and ng > 0. Now v = 0 requires A > 7, which reduces to
m <max{fy(p), fs(p)} (32)

where f5 (,0) Ep/ (T‘f‘(s—i—a@) and

6(1=0)(p—k)—kr

2(1—0)3(r +6 + ab)

+{w“_9”p_ﬁy‘mf+45ﬂ—9ﬂr+5+ammﬁ%
2(1—0)3(r+ 6+ af)

f3(p) =

Notice f3 is increasing, concave, f3(0) = 0 and f5(p,) = mo where 7 is given

in(31). Then n > 0 reduces to

K
e e (33



We also need n < 1 and ns; > 0 but these are redundant given the other conditions.
Case 3: 7 € (0,1) and n, > 0. For v € (0,1) we solve for A = 7 for n and
check that 0 < n < 1 holds iff 7 > f;(p) and 0 < v < 1 iff 7 < f5(p), which
also guarantees ns; > 0. Notice that when two pure-strategy steady states exist, as
usual, the mixed-strategy steady state does, too.

Case 4: ny, = 0. We need rV, < k which reduces to a simple parameter condition.
Here obviously n = 0 so we only need to check the best response condition for ~,
even if it is only relevant off the equilibrium path, since ny, = 0 means B never
actually gets to decide to consume or store x in equilibrium. For any v € [0, 1],
A = p/(r+0) as B’s trading probability is 0. For v =1, A < 7w iff 7 > p/ (r + 9)
and rVy; <k iff 1 < m. Fory =0, A > 7w iff 7 < p/(r+9) and vV, <k iff p < p,.
For v € (0,1), 7 = p/ (r+9) and rVy < k iff 7 < mg. Altogether, n, = 0 holds iff
m <7 and p < p,. A

Proof of Claim 2: Consider the model without M where B decides whether to

enter and whether to consume or store . We have

p— R ﬁ .
v, = Gzn) g g U AdF(w)+/ wdF(w)]—FVs
1L+ mny 0 R
o R a _
= AdF F
™o : +nb€ {/0 dF (m) +/R nd (7T>:| +W
Vi = p—0A+V;
Following the usual procedure, we get
. o u
A = A — A 1-F
(r+0) p+1+nb9{ +/A [ (W)]dw}
wo= —ont =M A

1+mnp

Ky = 1fnb9[/0RAdF(7r)+/:7rdF(7r)}

Again, using the third equation to eliminate n;, from the others we have a bivariate

system

In particular, the entry condition implies

A=(r+0)A—p+ Ky,
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which has a unique bounded solution, the steady state, A = (p — ) / (r +0). Then
o R @
ny = —0 {/ AdF(?T)—I—/ WdF(W)}—l
Ky 0 R
is also a constant, in and out of steady state, while inventories converge to steady

state following the n equation. Hence there is a unique equilibrium. H

Proof of Claim 3: Now suppose S decide whether to produce for themselves at
cost ¢ and enjoy p, or enter the market and produce when they meet B at the same
cost ¢, or not produce. Let V5 and V; be the value functions of S without and with
inventory, and V; the value of S in the market. Let N be the total measure of

sellers and n, those in the market. For simplicity, suppose 7 is degenerate. Then

Vo = max{Vi—ec,Vi0}
Vi = p—0(Vi=Vp)+ W

ANy .

rVy, = ns+nb95[7r—c—(Vs—%)]+Vs

Now we can proceed as in Claim 1 and consider four regimes, although now we do
not restrict attention to steady state.

Case 1: All sellers enter. That requires Vo =V, > Vi — c and n, = N,. There is a
unique solution

ombs (u—-c) and V; = p+ oV

vs:r(Ns—irnb) r+9 "’

and this is an equilibrium for parameters satistying v > ¢ and

oznbﬁs oznbﬁs
< ey —
1% il(u)_ , Nsu—l—(r—l—5 )C

Case 2: All sellers produce for themselves. That requires Vo = V; — ¢ > V, and

ns = 0. There is again a unique solution

= —2 \%
r r+a95(u c+ W)

and this is an equilibrium for parameters satisfying p > f2 (u) = afsu+(r + 0 — ab;) ¢

and p > (r+9)c.
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Case 3: Some sellers produce and hold inventory, and others enter the market.

That requires Vo = V; = V; — ¢ and n, € (0, N;). The unique solution is

p_(r+5)c,andn3: anyds (u — ) -

r N r p—(r—i—é)c_

and this is an equilibrium for parameters satisfying fi (u) < p < fa (u).
Case 4: Sellers do not produce. That requires Vo = 0, V}, —¢ < 0, V; < 0 and

ns = 0. The unique solution is

v, =L amﬂgzg%iﬂlﬂ

Cr4d r+ ab,

and this is an equilibrium for parameters satisfying p < (r +0) ¢ and u < ¢. This

completes all the cases, and implies uniqueness.
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